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ABSTRACT 

 

This project was developed to study the life cycle of the most pathogenic 

gastrointestinal nematode (GIN) affecting small ruminants, Haemonchus contortus. 

The main goal of the study was to test the effects that the environment and the age of 

the adult worm have on the resulting egg’s ability to hatch in vitro and the larvae’s 

ability to undergo exsheathment both artificially in vitro as well as in vivo within the 

rumen. A secondary study objective was to compare the results from the two 

exsheathment assays in order to see how well they correlate. 

 This study was designed to run in a series of cycles according to the start of 

each season (cycles denoted as: Fall 1, Winter, Spring, Summer and Fall 2). Each 

cycle began with the infection of two genetically related donor lambs with H. 

contortus larvae (L3). Larvae and eggs were harvested from the donor lambs for 4-6 

months (increasing worm ages) for each cycle and were subjected to in vitro egg hatch 

and in vitro and in vivo exsheathment assays, respectively. Eggs were incubated in a 

well plate at 26°C and after 24 hours of incubation, hatchability of eggs was assessed 

under the microscope. For the in vitro exsheathment assay, larvae were bubbled with 

CO2 for 15 minutes and incubated at 37°C for 18 hours and were then observed under 

the microscope to determine percent live exsheathment, as well as viability. For the in 

vivo assay, larvae were added to a containment capsule and suspended in the rumen of 

four fistulated ewes for 8 hours, recovered and examined under the microscope to 

determine percent live exsheathment, as well as viability. Data collected from the two 

exsheathment assays were statistically compared to one another according to seasonal 

effects and age of worm effects. 
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 It was found that neither season nor age of worm had any effect on egg 

hatchability. There was a season*worm age effect on both in vitro and in vivo 

exsheathment and viability across multiple seasons and worm ages tested.  Increased 

variability in in vitro exsheathment rates was detected during the Fall 1, Summer and 

Fall 2 cycles, with lower variability during the Winter and Spring cycles. Upon 

comparing the results of the two assays, it was determined that the in vitro assay 

yielded higher viability rates, but lower and more variable exsheathment rates when 

compared to the in vivo assay. 

 The results of this study indicate that both season and age of worm have an 

impact on exsheathment of H. contortus larvae both in vitro and in vivo, especially 

during the Fall and Summer seasons. The findings of this study also indicate that the 

in vitro and in vivo assay yield variable results according to different seasons and 

worm ages. This study has shed light on the role that both season and age of worm 

play in the exsheathment stage of the H. contortus life cycle, indicating that these 

factors need to be studied in more depth in future research. Additionally, more work 

should be done to compare different in vitro and in vivo exsheathment assays in order 

to refine methodology for how H. contortus is studied in anthelmintic research.  
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PREFACE 

 

This thesis has been prepared using the Manuscript Format. Chapter I contains a 

literature review, while Chapter II contains a manuscript that will be submitted for 

publication. Chapter III covers a summary of future research directions. 
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CHAPTER I 

REVIEW OF LITERATURE 

 

1. Gastrointestinal Nematode Infection in Small Ruminants 

1.1 Overview 

Gastrointestinal nematode (GIN) infection poses a major threat to the health of 

small ruminants. Infections have been identified as a major limitation for pasture-based 

production of small ruminants resulting in significant production and economic losses 

for producers (Hoste et al., 2006). Small ruminants suffering from GIN infection may 

experience severe anemia, weight loss, diarrhea and in acute cases, death, especially in 

lambs and pregnant females, as they are more susceptible to infection (Santos et al., 

2014). 

1.2 Economic Impact and Production Loss 

The FAO (Food and Agriculture Organization of the United Nations), reported 

that a total of 567.7 sheep (producing and animals slaughter) existed in world in 2017 

(FAOstat, 2017). The FAO also reported the worldwide sheep production value to be 

40,382 million dollars in 2016 (FAOstat, 2016). The 2017 USDA Census of 

Agriculture reported that a total of 237,829 sheep and goat farms were operating in the 

United States (USDA, 2017) showing an increase from the 2012 census (USDA, 2012). 

Sales in the United States for sheep and goat agriculture—including meat production 

and secondary products such as wool and mohair—totaled 923.6 million dollars 
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(USDA, 2017). According to the 2015 United States Department of Agriculture Census 

of Agriculture, 21,239 lambs (9.1% nonpredator death losses) and 13,543 sheep (8.6% 

nonpredator death losses) were lost due to internal parasites (USDA, 2015). 

1.3 Anthelmintic Resistance 

Due to overuse of commercial dewormers, anthelmintic resistance has emerged 

as a leading issue associated with gastrointestinal nematode infection and has become 

an issue of global concern (Assis et al., 2003; Hoste et al., 2006; Kaplan and 

Vidyashankar, 2012). Anthelmintic resistance in sheep parasites was first reported in 

the 1950s and 1960s (Kaplan, 2004) and by 1990, the issue had become a worldwide 

threat to small ruminant production (Waller, 1999). Studies have been conducted across 

the US to document patterns of resistance. Mortensen et al. (2003) reported that 

resistance to ivermectin and albendazole was prevalent on 18 out of 19 goat farms in 

Georgia in 2003, while there was no prevalence of moxidectin resistance. A follow-up 

regional study conducted during 2004–2006 detected resistance to moxidectin on 24% 

of sheep and goat farms surveyed (Howell et al., 2008), which suggests a rapid 

evolution of moxidectin resistance in GIN species with a background of ivermectin 

resistance (Terril et al., 2012). Within the last 11 years, two new drug classes have been 

introduced, monepantel and a combination of derquantel and abamectin, but recent 

work has confirmed cases of monepantel resistance in New Zealand (Kaminsky et al., 

2008; Little et al., 2010; Van den Brom et al., 2016). It has been proposed that new 

classes of anthelmintics alone will not solve the issue of anthelmintic resistance. By 

developing and altering strategies, producers can better preserve the efficacy of existing 

and future anthelmintic products (Kaplan and Vindyashankar, 2012). 
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         Widespread anthelmintic resistance has created a need for research and 

development of anthelmintic alternatives. One promising area of anthelmintic research 

focuses on plants that contain condensed tannins and other plant secondary compounds. 

Forages containing these compounds, such as sericea lespedeza (Lespedeza cuneata), 

have been shown to have an anthelmintic effect against different life stages of GIN 

species (Lange et al., 2006; Shaik et al., 2006). Other tannin-containing forages, such as 

birdsfoot trefoil (Lotus corniculatus) and cranberry vine, have been investigated in 

anthelmintic research involving the economically significant GIN species, Haemonchus 

contortus (Heckendorn et al., 2007; Barone et al., 2018; Barone et al., 2019). Using 

various in vitro and in vivo assays, it has been observed that condensed tannins have an 

inhibitory effect on the hatchability of eggs produced as well as on the exsheathment 

process of L3 stage larvae in H. contortus (Acharya et al., 2014; Alonso-Díaz et al., 

2008; Brunet et al., 2007). 

 

2. Haemonchus Contortus 

2.1 Overview 

         Haemonchus contortus is the most pathogenic GIN species infecting small 

ruminants across the world (Verissimo et al., 2012). This parasite is known to cause 

severe anemia due to its hematophagous tendencies, which lead to hemorrhage within 

the abomasum, ultimately killing heavily infected animals (Acevedo-Ramirez et al., 

2019).  Fatality is most common in lambs due to an underdeveloped immune system 

(Besier, 2012), as well as pregnant females due to a suppressed immune system 

resulting from metabolic demands of pregnancy (Vlassoff et. al., 2001). 
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2.2 Haemonchus Contortus Life Cycle 

         Haemonchus contortus is a trichostrongyle nematode that matures and 

reproduces in the abomasum, where it feeds on the host’s blood, causing anemia in 

susceptible animals (Ortolani et al., 2013; Emery et al., 2016). The life cycle of this 

parasite is depicted in Figure 1.  Adults mate and produce eggs that are shed in feces 

(Roeber et al., 2013). The eggs hatch yielding larvae that go through the L1 and L2 

stages within the feces, emerging from the fecal pellet as infective third stage larvae 

(L3), which are consumed by grazing animals.  The L3 larva is encased in a protective 

sheath covering that must be shed in order for the larva to develop into L4 stage. The 

process of shedding the sheath occurs in the rumen and is termed ‘exsheathment.’ The 

exsheathment process is critical for establishment of infection within the host. Although 

the details are not fully understood, it is believed that carbon dioxide (CO2) within the 

rumen environment plays a role in inducing exsheathment (Nikolaou & Gasser, 2006). 

Once exsheathed, the larvae move to the abomasum where they continue to mature 

through L4 and L5 stages, becoming adult blood sucking worms (Roeber et al., 2013). 

It has been previously determined that the rate at which the larvae mature can vary 

according to age and susceptibility of the host animal, with larvae maturing faster in 

younger or more susceptible animals (Silverman and Patterson, 1960). 
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 Figure 1. The life cycle of Haemonchus contortus in sheep.  

  

2.3 Experimentally infected animals used in Haemonchus contortus research 

Young animals are commonly used in research involving H. contortus. Lambs 

are typically experimentally infected in order to be used as “donor lambs” for eggs 

and/or larvae to be harvested for in vitro work, or they are infected to be used in 

various in vivo studies. The age of lambs used varies according to specific study 

objectives, ranging from 2 to 10 months old (Katiki et al., 2012; Zajac et al., 1990). It 

has been previously suggested that age of host can influence larval development in 

trichostrongyle infection. Mature ewes demonstrate a reduced development of larvae to 

L3 stage when compared to development patterns in 3-month-old lambs (Jorgensen et 

al., 1998). This supports using lambs as donor animals, as opposed to using mature 

animals.  
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2.3.1 Immune status in lambs 

  Hohenhaus et al. (1995) investigated immune responsiveness in lambs of 

different ages, ranging from 4 months to 15 months old (Hohenhaus et al., 1995). They 

found that antibody levels against H. contortus and T. colubriformis increased 

significantly going from lambs 6 months of age to lambs 9 months of age, but between 

12 and 15 months of age, these changes were not apparent (Hohenhaus et al., 1995). 

This suggests that by 12 months of age, antibody titers may reach a maximum/steady 

state. It has been previously determined that host immunity can have an impact on 

fecundity of adult female nematodes (Teladorsagia circumcincta) in sheep (Strain et al. 

2002).  

Lamb age has been shown to affect vaccine efficacy. Kooyman et al. (2001) 

found that lambs aged 6 and 9 months of age were 77% and 83% protected against H. 

contortus infection, respectively, whereas 3-month-old lambs showed no sign of 

protection after receiving the vaccine, which could be due to maternal antibody 

clearance. They also found a higher IgE serum level, higher eosinophil count and 

mucosal mast cell hyperplasia in older, vaccinated sheep (typical of a Th2 immune 

response) when compared to younger, unprotected lambs. These differences may be 

related to inability of immature immune systems in younger lambs to induce IgE 

responses (Kooyman et al., 2001).  

2.3.2 Gender as a factor for infection development 

 Male lambs are more commonly used as donor animals in studies involving 

experimental infections due to greater ease of large quantity fecal sample recovery. 

Several studies have demonstrated that male lambs are generally more susceptible than 
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females to nematode infection (Barger, 1993; Luffau et al., 1981; Adams, 1989). Male 

lambs develop a lower immunity to infection when compared to female lambs (Luffau 

et al., 1981), and male lambs develops higher worm burdens, with ewes demonstrating 

worm burdens only 40% as high as males (Adams, 1989).  

Although males tend to show lower immunity and/or higher susceptibility to H. 

contortus infection, it is not guaranteed that males will always develop infection 

differently from females. Several studies have found there to be no consistent 

differences between males and females for host susceptibility to H. contortus (Albers et 

al., 1989; Woollaston et al., 1990). One particular study even reported that males on 

trial had significantly lower fecal egg counts than females on trial, and the researchers 

noted that this finding contradicts findings from similar studies (Shaw et al., 1995).  

3. Haemonchus contortus Life Cycle Stage: Egg Hatch 

3.1 Egg Hatch Stage 

One adult female worm can lay between 5,000 and 15,000 eggs per day (Emery 

et al., 2016), allowing animals with heavy worm burdens to deposit millions of eggs on 

pasture. Hatching of H. contortus eggs and release of L1 larvae are proposed to be the 

result of both mechanical and enzymatic events which are not completely 

understood (Rogers and Brooks, 1977; Bone and Parish, 1988; Perry, 1989). It has been 

proposed that abomasal pH can have an effect on egg laying-- increasing acidity results 

in higher egg production (Honde and Bueno, 1982).  The shell of Haemonchus 

contortus eggs is composed of three layers: an outer vitellin layer, a middle, chitinous 

layer and inner phospholipid layer (Mansfield et al. 1992). In a study where H. 

contortus eggs were exposed to proteases, all three layers of the shell were disrupted, 
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indicating that the layers are primarily composed of protein (Mansfield et al., 1992). 

Studies have also found that the eggs of H. contortus contain particular ABC 

transporter, P-glycoprotein (Pgp), which plays a role in mechanisms for anthelmintic 

resistance (Kerboeuf et al. 2003). 

The egg hatch stage of H. contortus is commonly studied in anthelmintic 

research (Fouche et al., 2016; Varady et al., 2007; Hoekstra et al., 1997). Many studies 

investigate the effect of acetone: water extracts from tannin-rich plants on egg hatching 

(Chan-Perez et al., 2016; Fouche et al., 2016). One particular study that looked at 

multiple types of tannin containing forages found that four different foliage extracts-- 

Lysiloma latisiliquum, Laguncularia racemosa, Avicenna germinans and Theobroma 

cacao-- showed anthelmintic activity specifically by inhibiting the ‘eclosion’ or 

hatching of H. contortus eggs in the in vitro egg hatch assay (Vargas-magana et al., 

2014). A limited number of studies have examined the direct mechanism of action of 

tannins on nematode egg hatching (Vargas-magana et al., 2014). Condensed tannins are 

not absorbed from the gastrointestinal tract of ruminants (Terrill et al., 1994) and so it 

has been predicted that the tannins are excreted with the eggs in feces and act as 

inhibitors of egg hatching-- a theory that has been suggested by multiple in vitro studies 

(Molan et al., 2002, Min and Hart, 2003, Molan and Faraj, 2010) 

3.2 Egg Hatch Assay 

         There are multiple variations of the standard procedure for conducting in vitro 

egg hatch assays (Coles et al., 1992; Assis et al. 2003; Marie-Magdeleine et al. 2009; 

Barone et al., 2018). The egg hatch test (EHT) proposed by Coles et al., has been used 

to detect benzimidazole resistance in different strains of H. contortus larvae (Coles et 
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al., 2006; Varady et al., 2007). The egg hatch test proposed by Assis et al., (2003) was a 

modified version of the original method (Coles et al., 1992), which was further 

modified by Marie-Magdeleine et al., (2009) and is referred to as the egg hatch assay. 

The egg hatch assay involves incubation of H. contortus eggs in a PBS buffer in a well 

plate at 25 ℃ for 48 hours (Marie-Magdeleine et al., 2009). The well plate is observed 

under a microscope and larvae and eggs are counted to determine percent hatchability. 

Both the egg hatch test and the modified egg hatch assay have been used in numerous 

studies to assess anthelmintic activity of tannin rich forages (Adamu et al., 2013; 

Fouche et al., 2016; Barone et al., 2018). 

  

4. Haemonchus Contortus Life Cycle Stage: Exsheathment 

4.1 Mechanism of Exsheathment 

         One of the most crucial life stages for establishment of H. contortus infection is 

‘exsheathment’. The exsheathment stage is essential for the transition from free living 

stages to parasitic stages within the H. contortus life cycle (Hertzberg et al., 2002).  

During exsheathment third stage larvae (L3) shed an outer cuticle covering; this takes 

place in the rumen of the animal (Sommerville, 1957). The cuticle covering serves 

mainly to protect the larva from the environment during the free-living stages of the life 

cycle and can help to prevent degradation by proteases (Rhoades and Fetterer, 1996). 

Previous in vitro studies have been influential in developing the current hypothesis for 

the mechanical/chemical mechanism of larval exsheathment, and are summarized in a 

review article by Nikolaou and Gasser (2006). Although the exact mechanism is not 

fully understood, it is widely accepted that exsheathment is triggered by CO2 within the 
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rumen compartment of the ruminant stomach (Nikolaou & Gasser, 2006). Rogers and 

Sommerville (1960) were able to determine that rumen fluid induces exsheathment, but 

once stimulated, rumen fluid could be removed and exsheathment would still occur. 

They also discovered that temperature, pH and oxidation-reduction potential of rumen 

fluid influenced stimulation of larval exsheathment (Rogers and Sommerville, 1960). It 

has been suggested that the enzyme, carbonic anhydrase plays a role in inducing 

exsheathment (Wharton, 1991). The anterior portion of the cuticle contains 

chemoreceptors that sense carbonic anhydrase in the rumen environment, which then 

triggers the release of noradrenaline, further activating the actual process of 

exsheathment (Nikolaou & Gasser, 2006). Larvae release an exsheathing fluid-- 

thought to be released from an excretory pore orifice located between the nerve ring 

and base of the esophagus-- which erodes the sheath (Sommerville, 1957; Rogers and 

Sommerville, 1960). The release of the fluid causes a refractile ring to develop, which 

leads to a break in the sheath, creating a cap end that opens and allows the larvae to 

maneuver out of the sheath (Rogers and Sommerville, 1960; Wharton, 1991).  The 

process of exsheathment is depicted in Figure 2. Once exsheathed, the infective L3 are 

able to mature through the L4 and L5 stages before becoming adult blood sucking 

worms. 
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Figure 2. Haemonchus contortus larval exsheathment. The ensheathed L3 is triggered 

by CO2 to release enzymes and exsheathing fluid, which weaken the cuticle (A). The 

cuticle breaks to form a cap (B) portion and the exsheathed L3 (C) escapes its sheath 

(D). (Parasites and Parasitic Diseases of Domestic Animals- Dr. Colin Johnstone 

http://cal.vet.upenn.edu/projects/merial/Nematodes/nems_7.htm 

  

4.2 In vitro Exsheathment Assays 

         Multiple assays have been developed to induce larval exsheathment in vitro. 

One of the most common exsheathment assays that is used in anthelmintic research is 

the bleach assay, which the uses a solution of sodium hypochlorite (2% w/v) to induce 

exsheathment (Conder and Johnson, 1996; Bahuaud et al., 2006). In this assay, H. 

contortus larvae are typically incubated in combination with tannin containing plant 
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extracts for three hours before being rinsed with phosphate buffer solution (PBS) 

(Bahuaud et al., 2006). After rinsing, the larvae are subjected to a sodium hypochlorite 

solution (2% w/v) and exsheathment is analyzed under a microscope every 10 minutes 

for a period of one hour (Bahuaud et al., 2006). Since its initial development, the larval 

exsheathment bleach assay has been used in many studies that focus on testing various 

tanniferous plant species for anthelmintic properties (Alonso-Diaz et al., 2008; Son-de 

Fernex et al., 2012; Araújo et al., 2017). 

         A different in vitro exsheathment involving the use of CO2 to induce 

exsheathment in H. contortus L3 [assay was developed by Conder and Johnson in 

1996]. In the CO2 exsheathment assay, L3 larvae are added to a polypropylene tube 

with 10 ml of Earle’s Balanced Salt Solution. The tube of larvae is covered with 

ParafilmⓇ and CO2 is bubbled into the solution for 10 minutes using a glass pipet tip 

attached to CO2 tank inserted through the parafilm (Conder and Johnson, 1996). The 

tube is then capped and incubated at 37° C for 18 hours. Exsheathment counts are 

determined post-incubation by observing 100 live larvae under a microscope (Conder 

and Johnson, 1996). This method yields exsheathment rates ≥ 93.5% and larvae 

subjected to this treatment show higher infectivity rates than larvae subjected to 

treatment using sodium hypochlorite (Conder and Johnson, 1996). The CO2 method has 

been used in a few recent studies, but is not as commonly used as the bleach method 

proposed by Bahuaud et al. (2006) (Barone et al., 2018; Barone et al., 2019).  

  



www.manaraa.com

 

13 

 

4.3 In vivo exsheathment assays 

         While exsheathment of H. contortus L3 has been widely studied using in vitro 

methods, only a few studies have used in vivo methods (Sommerville, 1957; Hertzberg 

et al., 2002; Brunet et al., 2007; Lonngren et al., 2017). These studies varied in the 

larval containers used for suspension in fistulated animals, as well as in the time periods 

for exsheathment incubation (Sommerville et al., 1957; Hertzberg et al., 2002; Brunet 

et al., 2007). There are a number of issues associated with the methodology proposed in 

previous studies including issues with protocol supplies, larval containment issues and 

consistency of exsheathment results due to inability of rumen fluid to effectively flow 

through larval capsules and due to these inconsistencies, a new protocol for evaluating 

larval exsheathment in vivo was developed by Lonngren et al. (2017).  After testing 

three different types of capsules, Lonngren et al. (2017) chose one composed of a piece 

of Tygon tubing and Nunc™ Cell Culture Inserts, a design which resembled the 

capsules used by Brunet et al. (2007). It was determined that larvae exsheathed 

consistently at an average rate of 82 ± 1% during an 8-hour exposure period (Longren 

et al., 2019). The results produced by the 8-hour exposure using Nunc™ capsules are 

most consistent with results published by Sommerville (1957) but vary significantly 

from other findings (Hertzberg et al., 2002; Brunet et al., 2007). Variability in larval 

performance for both in vivo and in vitro exsheathment assays was observed by 

Lonngren et al. (2017). In their experiments, fecal matter was cultured at room 

temperature for 8 days, which can potentially have an influence on exsheathment of the 

resulting L3 larvae. It is also possible that larvae harvested from older donor infections 

may not exsheath as well due to the age of the adult parasites producing the larvae 
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(Lonngren et al., 2017). It is possible that environmental conditions may also have an 

impact on larval performance in exsheathment assays, but time of year/season is not 

mentioned in previous in vivo studies (Sommerville, 1957; Brunet et al., 2007; 

Hertzberg et al., 2002 Lonngren et al. 2017). The variability of in vivo exsheathment 

data, as well as inconsistencies observed between different batches of H. contortus L3 

larvae indicate a need for further exploration of potential factors influencing 

exsheathment. 

 

5. Temperature and Environmental Impacts on Haemonchus contortus Life Cycle 

5.1 Hypobiosis of H. contortus 

         It is known that during the L4 stage of their life cycle, H. contortus are able to 

transition into a hypobiotic state of arrested development (Gatongi et al., 1998).  It was 

initially hypothesized that hypobiosis was a result of host resistance to infection, but 

further research has confirmed that environmental factors play a crucial role in 

triggering this phenomenon (Waller and Thomas, 1975; Eysker, 1981; Gatongi et al., 

1998).  

5.1.1 Hypobiosis in temperate climates 

In temperate climates, hypobiosis allows for “overwintering” of H. contortus 

within the host, allowing the larvae to survive the cold winter months and resume 

development once the environment becomes favorable again in the spring (Gatongi et 

al., 1998; Blitz and Gibbs, 1972; Waller et al., 2004). Studies exploring patterns of 

hypobiosis have been performed in different temperate regions including England, 
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Central Europe, Canada, New Zealand and the United States (Waller and Thomas, 

1975; Langrova et al., 2008; Falzon et al., 2014; McKenna, 1974; Blitz and Gibbs, 

1972; Zajac et al., 1988). In the United States, it has been suggested that decreasing 

temperature and photoperiod are associated with onset of hypobiosis and may be 

crucial stimuli for the free-living stages of this nematode species (Capitini et al., 1990; 

Langrova et al., 2008). This concept has little support from studies performed in other 

countries with a similar temperate climate, with evidence of hypobiosis occurring as 

early as August in England and Quebec, Canada (Connan, 1971; Blitz and Gibbs, 

1972).  

Source of L3 (culture and storage conditions) used to infect study subjects has 

been identified as a potential factor influencing variability in observed hypobiosis 

patterns (Capitini et al., 1990). In studies in both England and Canada that used freshly 

cultured larvae for infection of lambs before slaughter and larvae/worm collection, 

researchers observed levels of hypobiosis ranging from >90% to 20-45%, respectively 

(Connan, 1975; Blitz and Gibbs, 1972). Results from studies in The Netherlands and 

New Zealand using larvae in different storage conditions (5-21℃ for 30-80 days) all 

yielded high levels of hypobiosis in specific H. contortus strains (Eysker, 1981; 

McKenna, 1973). These patterns were explored in depth in a study performed in Ohio 

by Capitini et al., (1990). The researchers performed two different experiments-- one 

focusing on autumn temperature conditions and one on summer temperature 

conditions-- that tested 17 different larval conditioning methods with varying 

temperature, photoperiod simulations and culture conditions using a known strain of 

H.contortus that had previously exhibited 98-100% hypobiosis in naturally infected 
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sheep during winter conditions (Capitini et al., 1990; Herd et al., 1984). The researchers 

used a total of 108 crossbred 3-month-old lambs, divided into different treatment 

groups that were infected using larvae conditioned by different methods using 

environmental chambers and refrigerators (Capitini et al., 1990). The researchers found 

that across the different larval conditioning procedures of varying temperatures and 

photoperiod treatments, overall incidence of hypobiosis was low, ranging from 0-36% 

(Capitini et al., 1990). It was also determined that there were no significant differences 

in level of hypobiosis across the different treatment groups when compared to the 

control group (untreated H. contortus derived from fresh culture) (Capitini et al., 1990). 

The highest incidence of hypobiosis for the autumn experiment was observed for three 

treatment groups that had all been given conditioned L3 larvae exposed to 20℃ 

followed by sudden or gradual decrease to 4℃. In the summer experiment, hypobiosis 

was observed for 4 out of 9 treatment groups, but only at low intensities ranging from 

1.2-4.1% (Capitini et al., 1990). The researchers noted that although results from the 

study showed variation and did not agree with findings from previous work, another 

United States study by Mansfield et al., (1977) also failed to induce hypobiosis in 

larvae using different culture/storage temperature conditions. The researchers 

concluded that a possible explanation for the results of their study, as well as overall 

variability observed across different studies, is that seasonal hypobiosis of H. contortus 

is an obligatory genetic strategy that occurs without direct external stimuli (Capitini et 

al., 1990). Differences between strains of H. contortus further supports the authors’ 

hypothesis that hypobiosis occurs without direct external stimuli.  
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5.1.2 Hypobiosis in tropical climates 

In regions with a tropical climate, such as Africa, hypobiosis of H. contortus 

occurs during the “dry season”, when conditions are unfavorable for larval 

development (Fakae, 1990). This stage of arrested development ends at the beginning 

of the “rainy season”, as H. contortus larvae are able to resume development in wet 

conditions (Okon and Enyenihi, 1975; Fakae, 1990). Studies exploring hypobiosis in 

different tropical areas of the world have yielded variable results, depending on specific 

study sites (Gatongi et al., 1998). For example, studies performed in countries such as 

Egypt and Brazil have reported no evidence of hypobiosis, whereas in Zimbabwe and 

Mauritania, low levels of hypobiosis have been reported and in Nigeria, high levels of 

hypobiosis were detected (Charles, 1989; El-Azazy, 1990; Pandey et al., 1994; Jacquiet 

et al., 1995; Ogunsusi and Eysker, 1979).  

 It has been suggested that there are two “modes” for occurrence of hypobiosis in 

Haemonchus contortus (Gatongi et al., 1998). The first mode is predominantly 

observed in temperate climates and is characterized by a parasite population within the 

host that is composed exclusively of larvae in the hypobiotic state (Blitz and Gibbs, 

1972; Waller and Thomas, 1975). The second mode is predominantly observed in 

tropical climates and is characterized by a parasite population within the host that is 

composed of larvae in the hypobiotic state coexisting with adult worms (Ogunsusi and 

Eysker, 1979; Pandey et al., 1994; Jacquiet et al., 1995). Evidence for the second mode 

has led to the hypothesis that in some tropical areas, hypobiosis is not essential for H. 

contortus survival (Gatongi et al., 1998). Studies have shown that levels of hypobiosis 

increase during the dry season and decrease during the wet season whereas levels of 
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adult worms decrease during the dry season and increase during the wet season (Pandey 

et al., 1994; Gatongi et al., 1998). This evidence suggests that although it may not be 

exclusively responsible for survivability of H. contortus infection, hypobiosis is still 

considered to be advantageous for this species (Gatongi et al., 1998). 

5.2 Effect of Temperature on Egg Hatch 

 It is common practice to store fecal samples containing nematode eggs in a 

refrigerator (4℃) in order to prevent egg hatching before fecal egg counts and/or other 

assays are performed (Crofton and Whitlock, 1965; Foreyt, 1986; Hertzberg et al., 

2002; Zajac and Conboy, 2012). Different studies have examined the effects of cold 

storage/incubation on H. contortus egg survivability and hatchability. Smith-Buijs and 

Borgsteede (1986) reported that incubation at 4℃ for a period of one week is lethal for 

H. contortus eggs. Jasmer et al. (1986) examined both the ability of H. contortus eggs 

to develop when incubated at 10℃ and the hatchability of eggs when exposed to 

temperatures of -18℃. They found that after 5 days of incubation, only 32% of H. 

contortus eggs had developed to the larvated stage, whereas for Ostertagia 

circumcincta, 95% of incubated eggs had developed to the larvated stage. When 

exposed to -18℃, H. contortus eggs exhibited <4% survivability (i.e. hatchability), 

compared to >87% for O. circumcincta (Jasmer et al., 1986).  

 Mckenna (1998) aimed to investigated how length of exposure time to cold 

temperature (4℃) influenced success rate in development to third stage larvae. Fecal 

samples were incubated at 4℃ for different periods of time (0, 1, 3, 7 and 12 days) and 

were then transferred to an incubator at 27℃ for 7 days to allow hatching of eggs and 

development to third stage larvae to occur. Both 7- and 12-day incubation periods 
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produced significantly lower L3 larval yields (P <0.05) when compared to 0- and 1-day 

incubation periods. The L3 larval yield for the 12-day incubation period was also 

significantly lower (<0.05) than that of the 3-day incubation period (Mckenna, 1998). 

Viability of H. contortus eggs decreased from 100% to 0% going from 0 days to 12 

days of cold storage, showing a sharp decrease after 3 days of incubation (Mckenna, 

1998). To date no studies have specifically examined the effect of natural seasonal 

changes (as opposed to experimental) on H. contortus egg hatch in vitro. 

5.3 Effect of Temperature on Haemonchus contortus L3 larvae 

5.3.1 Effect of cold temperature incubation/storage on L3 larvae 

 There are two main methods for storing H. contortus L3 larvae-- 

cryopreservation and refrigerator storage (Chylinski et al., 2015). In cryopreservation, 

L3 are exsheathed and placed in physiological serum and stored in liquid nitrogen (Van 

Wyk et al., 1977). Although this technique yields viable larvae that remain infective to 

sheep after 10 years of storage, it is not useful for storage of larvae to be used in 

exsheathment assays, as the larvae are exsheathed prior to storage (Rew and Campbell, 

1983; Campbell et al., 1973). The refrigerator storage technique allows stocks of L3 

larvae to be maintained at 4℃ for several months (MAFF, 1986). Sheathed larvae are 

unable to feed and rely on energy reserves while in storage (O’Conner et al., 2006; 

Chylinski et al., 2015). Cool storage works by reducing larval metabolic rate, slowing 

depletion of energy stores (Vlassoff et al., 2001).  

 Refrigerator storage of H. contortus L3 larvae is well documented, with most 

published studies noting that larvae used in their studies had not been in storage for 

more than three months (Hertzberg et al., 2002; Brunet et al., 2007). Chylinski et al. 
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(2015) investigated the effect of long-term refrigerator storage on the establishment of 

infection and the egg to L3 larvae development ratio. They found that for a particular 

strain of H. contortus both infection establishment (number of adults) and ability of 

eggs to develop to the L3 stage were significantly reduced (p < 0.05) in larvae stored 

for 16 months compared to larvae stored for 4 months (Chylinski et al., 2015). In their 

study, they did not find any significant differences for any life cycle parameters for 

larvae stored for 7 months when compared to that stored for 4 months. The researchers 

noted that these findings are drastically different from the effects of storage on 

Trichostrongylus retortaeformis, where negative effects were observed after only 9 

weeks in storage (Kerboeuf, 1978; Mallet and Kerboeuf, 1985). The findings of this 

study also do not agree with the common recommendation (< 3 months) for refrigerator 

larvae storage. 

5.3.2 Effects of cold storage on exsheathment stage of L3 larvae 

 Larvae used in exsheathment assays are commonly stored using the refrigerator 

storage method, and so it is important to understand how cold storage can impact the 

ability of the larvae to exsheath. Early studies exploring the effects of cold storage on 

larval exsheathment yielded variable results. Silverman and Podger (1964) noted that 

there were no observed differences in exsheathment rates for larvae stored at 4℃ for 1 

week and 3 months, however the exsheathment methodology in the study is unclear. 

Slocombe and Whitlock (1970) investigated the role of time in cold storage as a factor 

influencing in vitro exsheathment. Larvae were stored for varying amounts of time (1-

12 weeks) at 4℃ before being subjected to in vitro exsheathment. Exsheathment was 

induced by combining larvae with 0.02 M- Na2B4O7.10H2O into which a gas mixture of 
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40 % CO2-60 % N2 was bubbled for 3 minutes followed by either a 20 minute or 60-

minute incubation period (Slocombe and Whitlock, 1970). No significant differences 

were observed for exsheathment of unstored L3 larvae compared to larvae stored for 1-

12 weeks for the 60-minute incubation period. A gradual decrease in exsheathment 

rates was observed for the larvae subjected to the 20-minute incubation period going 

from 1-12 weeks of cold storage (Slocombe and Whitlock, 1970). For all 20-minute 

incubation experiments and some 60-minute incubation experiments, the researchers 

observed a notable decrease in exsheathment rates 24 hours after the larvae were placed 

in cold storage. This was suggested to be the result of cold shock, which the larvae 

recovered from after four days (Slocombe and Whitlock, 1970). 

5.3.3 Effects of high temperature incubation and heat shock on L3 larval exsheathment 

In the GIN species, Trichostrongylus axei and Labiostrongylus eugenii, it has 

been shown that an increase from ambient temperature to temperature that replicates 

that of the host’s body plays a role in triggering the exsheathment process (Campbell 

and Gaugler, 1991; Smales and Sommerville, 1977). Early work has shown that 

temperature specifically impacts exsheathment by influencing the formation of the 

refractile ring in certain abomasal species, including T.  axei and O. circumcincta 

(Rogers and Sommerville, 1960). It was determined that a temperature of 40℃ was 

optimal for refractile ring formation in these species. Furthermore, it was shown that for 

both species, an elevated temperature was needed to trigger exsheathment, but 

exsheathment was not inhibited by subsequent reduction in temperature (Rogers and 

Sommerville, 1960). 
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 Bekelaar et al. (2018) investigated how the rate of change in temperature and 

the magnitude of change in temperature each impacted exsheathment both in the 

presence and absence of CO2. The researchers determined that larvae exposed to heat 

shock (rapid change in temperature to a threshold of 35-40℃) exhibited higher rates of 

exsheathment when compared to larvae exposed to a constant or gradually elevated 

temperature (Bekelaar et al., 2018). They determined that heat shock (in combination 

with CO2 exposure) induced exsheathment, but exsheathment rates were not inhibited 

by a subsequent decrease in temperature to 19℃. This finding implies that heat shock 

acts as a trigger for the exsheathment but is not required during the actual process of 

exsheathment (Bekelaar et al., 2018). The study also found that a minimum final 

temperature (post heat shock) of 30℃ was needed for exsheathment to occur and that 

maximal exsheathment rates were observed at final temperatures over 40℃ (Bekelaar 

et al., 2018). Only a small percentage of L3 larvae exhibited exsheathment when 

exposed to gradually increasing temperatures even in the presence of CO2 (Bekelaar et 

al., 2018). In order to reach 50% exsheathment, L3 larvae had to be continuously 

exposed to temperatures of 40℃ for at least 3 days. These findings further support the 

notion that heat shock is more crucial as a biological factor for inducing exsheathment, 

than temperature itself (Bekelaar et al., 2018). A follow up study tested this hypothesis 

using rumen fluid as a medium combined with CO2 and heat shock (Bekelaar et al., 

2019). The results yielded >80% exsheathment in under 4 hours for H. contortus 

(Bekelaar et al., 2019). Future work should focus on exploring the specific biological 

pathways triggered by heat shock, as well as additional host or environmental factors 
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that may influence the rate of exsheathment when the magnitude of heat shock is 

smaller (Bekelaar et al., 2018).  

5.4 Effects of Climate on H. contortus development 

 With the rising issue of climate change, recent studies have focused on 

determining underlying effects of climate (temperature, humidity, rainfall) (Rose 

Vineer et al., 2016; Wang et al., 2014) and the development of different mechanistic 

models to predict temporal and spatial changes in parasite populations (Vineer et al., 

2016). Using a climate simulation model, researchers were able to compare 

developmental success of H. contortus strains at varying temperatures (15-37℃) in real 

time to those predicted by the model. The researchers found that developmental success 

for three different H. contortus isolates was lower than that predicted by the climate 

simulation model, indicating the potential for overestimation of disease transmission 

risk at higher temperatures that are predicted in different models of climate change 

(Vineer et al., 2016). A different study was designed to explore the specific effects of 

moisture and humidity on ability of larvae to migrate out of fecal matter and onto 

pasture (Wang et al., 2014). The researchers found that light and regular rainfall 

allowed quicker emergence of larvae from a moist fecal pellet under humid conditions, 

but slower emergence of larvae from a fecal pellet in dry conditions (Wang et al., 

2014). This indicates that humidity acts in combination with fecal moisture to increase 

larval migration (Wang et al., 2014). It was also determined that although larvae were 

not able to migrate out of dry fecal samples in the absence of rainfall, the larvae within 

the dry pellets survived, indicating the potential for fecal pellets to act as a reservoir in 

dry conditions (Wang et al., 2014). It has been further suggested that microclimate has 
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a significant impact on fecal moisture content, which ultimately has an impact on larval 

migration, and may be more influential than macroclimate impacts (Wang et al., 2018). 

6. Effect of Elevated Temperature and Humidity on Host Animal 

6.1 The effect of heat stress on livestock production, immunity and health 

 Heat stress in sheep is associated with reduced feed intake, as well as changes in 

the metabolism of water, protein, energy, enzymatic reactions, and hormonal secretions 

(Marai et al., 2007). An increase in rectal temperature, respiration rate, as well as heart 

rate are typically used as indicators of heat stress in sheep. Another indicator of heat 

stress in sheep is thermal humidity index (THI). Exposure to THI above 80 results in 

elevated rectal temperatures and has shown to prevent lactating ewes from maintaining 

thermal balance, making it a good measure for determining heat stress (Sevi et al., 

2001). Heat stress has been studied extensively as a factor negatively impacting milk 

production, performance and immunity in sheep, all of which are described in a review 

article by Sevi and Caroprese (2012). Exposure to heat (dry bulb temperature of 40℃) 

in combination with exercise has been shown to induce heat stress, leading to severe 

respiratory alkalosis (Bell et al., 1983). In a more recent study, Gaughan et al. (2016) 

found that heat stressed sheep showed an increase in respiration rate, rumen 

temperature, creatine kinase and creatinine as well as a decrease in alkaline phosphate 

(ALP), -glutamyl transpeptidase (GGT) and interleukin-1 (IL-1) plasma 

concentrations compared to thermal neutral sheep, which indicates some impairment of 

the immune system. 

https://www-sciencedirect-com.uri.idm.oclc.org/science/article/pii/S0921448812002714#bib0190
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 Heat stress has been studied extensively in swine and it has been recently 

determined that heat stress in combination with reduced feed intake alters intestinal 

integrity and increases endotoxin permeability within the GI tract (Pearce et al., 2013). 

Heat stress has also been examined as a factor influencing GI health in cattle and 

studies have shown that heat stressed cattle consume lower quantity of feed, causing a 

decrease in rumination (Aganga et al. 1990; Soriani et al. 2013). Moallem et al. (2010) 

further described the main negative impact caused by elevated THI to be a decrease in 

rumen temperature, leading to decrease in dry matter intake, and subsequently, lower 

milk yield.  In sheep, heat stress (induced via exposure to elevated THI) leads to 

decreases in dry matter intake, rumen bacteria count, rumen osmolarity, rumen pH and 

digesta passage rates, among other GI parameters (Bernabucci et al., 2009). A decrease 

in feed intake can reduce the amount of heat that is generated by rumen digestion, 

which disrupts metabolism (Morand-Fehr and Doreau, 2001). Excessive panting is 

commonly observed as a response to heat stress in sheep, which causes nutritional 

requirements for maintenance to increase (Silanikove, 2000).  

 6.2 The effect of heat stress on sheep infected with Haemonchus contortus 

 It is known that plasma cortisol (indicator of stress in livestock) levels are 

influenced by environmental temperatures (Nejad et al., 2014). Swarnkar and Singh 

(2017) looked at differences between sheep bred for resistance to H. contortus infection 

and susceptible sheep in relation to heat stress. They found that both groups remained 

in stress during the dry/hot season regardless of resistance, but the susceptible sheep 

showed signs for higher stress (high cortisol levels and fecal egg count) for a longer 

period of time moving from the dry/hot season into the humid/hot season. These 
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differences indicate that resistant animals are better able to withstand stress in the 

presence of infection better than those animals who are susceptible and that seasonal 

variation has a direct impact on the stress response of H. contortus infected sheep. In a 

more recent study performed in the same region (Avikanager, Rajashan), researchers 

found that THI (thermal humidity index) showed a positive relationship with both fecal 

egg count and abomasal worm burden (Swarnkar and Singh, 2018). The researchers 

found a positive correlation between FEC and THI during the period of stress (April-

June) and again in the period of non-stress (October to December), indicating 

resumption of development in hypobiotic larvae. During the period of April-June, this 

could be due to unfavorable, stressful conditions for the host, while during the period of 

October-December, this may be caused by induction of hypobiosis due to non-stressful 

status of the host.  

7. Age of Haemonchus contortus larvae 

7.1 Effect of Age of H. contortus on Exsheathment 

         Castaneda-Ramirez et al. (2017) examined the direct effects of age of stored H. 

contortus larvae on exsheathment inhibition using Acacia pennatula extracts 

(Castaneda-Ramirez et al., 2017). They found that at a concentration of 400 μg/mL, 

exsheathment inhibition decreased significantly as the age of the larvae increased from 

1 to 7 weeks. While exsheathment inhibition at 400 μg/mL Acacia extract was 100% 

for L3 aged 1-4 weeks old, exsheathment inhibition dropped to 39.5% and did not 

exceed 77.7% in weeks 5-7 (Castaneda-Ramirez et al., 2017). Furthermore, 1200 

μg/mL Acacia pennatula extract was needed to achieve 100% exsheathment inhibition 

in 5-week-old L3 larvae and a concentration beyond 1200 μg/mL would be needed to 
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achieve 100% exsheathment inhibition in 6-7-week-old L3 larvae (Castaneda-Ramirez 

et al., 2017). The study also looked at the effect of larva age on larval migration and 

motility, finding that both decreased as age increased (Castaneda-Ramirez et al., 2017). 

Older L3 larvae may exsheath more readily than younger L3 larvae due to lower energy 

reserves and the accomplishment of various physiological ‘steps’ needed for 

exsheathment to occur (Hertzberg et al., 2002; Castaneda-Ramirez et al., 2017). Future 

research should investigate morphological changes caused by Acacia pennatula in L3 

larvae of different ages, as well as evaluating effects of age using different isolate 

strains of H. contortus. At the present time, this is the only study that looks at the direct 

correlation between age of H. contortus larvae and exsheathment. No studies to date 

have examined the age of the adult worm (rather than the age of the larva) in an 

infection and how this may impact larval exsheathment.  

8. Summary and Conclusion 

 Gastrointestinal nematode (GIN) infection poses a major threat to the health of 

small ruminants, negatively impacting economic viability of producers. Life cycle 

stages including egg hatch and larval exsheathment are commonly studied in GIN 

anthelmintic research. Donor animals are commonly infected to produce eggs and 

larvae to be used in various in vitro and in vivo assays, on a year-round basis. 

Variability observed in previous studies has suggested that multiple factors may 

influence larval performance in in vitro and in vivo assays. While previous research has 

explored environmental factors influencing the life cycle of H. contortus, there is very 

limited work that examines the direct relationship between seasonal fluctuations and 

egg and larvae performance in in vitro and in vivo egg hatch and exsheathment assays. 
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There is also a lack of knowledge of how the age of the adult worm in a host infection 

can influence performance of their offspring (larvae) in different assays. Studying the 

effects of season and age of infection on performance of larvae and eggs in various 

assays can ultimately improve the quality of future research and shed light on ‘best 

practices’ when using donor animals. 
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Abstract 

 

Haemonchus contortus eggs and larvae are routinely used in studies of 

anthelmintic compounds to combat gastrointestinal nematode infection. Although it is 

known that Haemonchus contortus larvae arrest their development within the host 

during unfavorable environmental conditions, it is unknown how time or year or age 

of the adult worm affects the hatchability of eggs or the efficiency with which the 

larvae exsheath artificially in vitro or in vivo within the rumen. The main objective of 

this study was to determine the role of time of year and age of adult H. contortus on 

hatchability of eggs and ability of resulting infective larvae to exsheath artificially in 

vitro or in vivo. A secondary objective of the study was to asses correlation between in 

vitro and in vivo assays. Two lambs were experimentally infected (10,000 L3) at the 

start of each season (autumn equinox 1, Winter solstice, vernal equinox, summer 

solstice, autumn equinox 2; n=2/season). Donor lamb feces were collected monthly for 

up to six months following each infection. Egg hatchability was tested in vitro and L3 

were subjected to in vitro exsheathment using artificial CO2 and in vivo exsheathment 

within ruminally fistulated ewes. There was no effect of worm age (p = 0.4), season (p 

= 0.09), or worm age*season (p = 0.07) on egg hatchability. There was a worm 

age*season effect on both in vitro (p ≤ 0.0002) and in vivo (p ≤ 0.0002) viability as 

well as in vitro (p ≤ 0.0001) and in vivo (p ≤ 0.0077) exsheathment. The in vivo assay 

yielded more variable viability across seasons compared to in vitro, but for both, 

viability of larvae from worms aged one month was lower during the Fall 1 and 

Winter cycles compared to all other cycles. The in vitro assay yielded more variable 

exsheathment across and within seasons compared to the in vivo assay, especially 
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during the Fall 1, Summer and Fall 2 cycles. When comparing the in vitro to the in 

vivo assay, in vitro yielded higher viability while in vivo yielded higher exsheathment 

across various months and seasons of testing (p ≤ 0.05). The results of this study can 

help to identify constraints posed by seasonal changes in using H. contortus L3 in in 

vitro and in vivo assays, as well as highlight the importance of age of an infection 

producing the L3. 
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1. Introduction 

Gastrointestinal nematode (GIN) infections (particularly Haemonchus 

contortus infection) pose a major threat to the health of small ruminants and have been 

identified as a major limitation for pasture-based production of sheep and goats (Hoste 

et al., 2006; Veríssimo et al., 2012). Haemonchus contortus life cycle stages, such as 

the egg hatch and larval exsheathment are commonly studied in anthelmintic research. 

These life cycle stages are typically examined using experimentally infected sheep and 

goats on a year-round basis to provide fecal eggs and larvae used in in-vitro and in-

vivo assays (Brunet et al., 2007; Alonso-Diaz et al., 2008; von Son-de Fernex et al., 

2012; Araújo et al., 2017; Assis et al. 2003; Marie-Magdeleine et al. 2009; Barone et 

al., 2018). 

Multiple assays have been developed to assess exsheathment in vitro (Bahuaud 

et al., 2006; Alonso-Diaz et al., 2008; Son-de Fernex et al., 2012; Araújo et al., 2017; 

Conder and Johnson, 1996; Barone et al. 2018). The sodium hypochlorite method 

(Bahuaud et al., 2006) is more commonly utilized (Alonso-Diaz et al., 2008; Son-de 

Fernex et al., 2012; Araújo et al., 2017), however it has been suggested that the CO2 

method improves viability and infectivity (Conder and Johnson, 1996). A considerable 

amount of variability has been observed across in vivo studies in relation to 

methodology, as well as time for exsheathment to occur (Sommerville et al., 1957; 

Hertzberg et al., 2002; Brunet et al., 2007). While results from previous in vivo studies 

have been observationally compared to results using different in vitro methods-- 

sodium hypochlorite method (Bahuaud et al., 2006; Brunet et al., 2007) and rumen 

simulation (RUSITEC) technique (Czerkawski & Breckenridge, 1977; Hertzberg et 
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al., 2002)-- they have not been compared statistically to one another, and the CO2 

method (Condor and Johnson, 1996) has yet to be directly compared to in vivo 

methods.  

The effect of varying laboratory incubation temperatures on H. contortus eggs 

and L3 larvae has been previously studied (Silverman and Podger, 1964; Slocombe 

and Whitlock, 1970; Smith-Buijs and Borgsteede, 1986; Jasmer et al., 1986; Mckenna 

et al., 1998; Bekelaar et al., 2018). Prolonged exposure to controlled cold temperatures 

(<10℃) can negatively impact H. contortus egg hatchability, the development of eggs 

to third stage larvae and viability of third stage larvae (Smith-Buijs and Borgsteede, 

1986; Jasmer et al., 1986; Mckenna et al., 1998; Chylinski et al., 2015; Ilieve et al., 

2018). The effect of elevated laboratory incubation temperature on L3 larvae has also 

been studied, showing a negative correlation between viability and increased 

temperature ≥ 40℃ (Ilieve et al., 2018) and it has been further determined that heat 

shock (rapid change in temperature to 40℃) may be an important factor in inducing 

exsheathment (Bekelaar et al., 2018; Bekelaar et al., 2019).  

Haemonchus contortus larvae transition into a hypobiotic state, to increase 

survival during adverse environmental conditions (Gatongi et al., 1998;). Hypobiosis 

of H. contortus has been studied extensively in different areas of the world in both 

temperate and tropical climates (Fakae, 1990; Connan, 1971; McKenna, 1974; 

Capitini et al., 1990; Uriate et al., 2003; Waller et al., 2004; Sargison et al., 2007; 

Hosseini et al., 2012). A considerable amount of variability has been observed across 

various studies examining hypobiosis patterns in temperate climates (Capitini et al., 

1990; Connan, 1975; Blitz and Gibbs, 1972; Eysker, 1981; McKenna, 1973). The 
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source of L3 larvae (culture and storage conditions) used for study subject infection in 

different studies has been identified as a potential factor influencing variability in 

observed hypobiosis patterns (Capitini et al., 1990). Other climatic factors have been 

studied in relation to H. contortus development, such as humidity which has been 

found to act in combination with fecal moisture to increase larval migration, which is 

ultimately influenced by microclimate as opposed to macroclimate (Wang et al., 2014; 

Wang et al., 2018). Studies exploring hypobiosis and climate factors have focused on 

impacts related to larval development and migration patterns, but very limited work 

exists examining the impact of season specifically on larval exsheathment both in vitro 

and in vivo.  

It is common practice to store experimentally obtained L3 larvae in a 

refrigerator (4-8℃), with most published studies noting that larvae used in their 

studies had been in storage for no longer than three months (Hertzberg et al., 2002; 

Brunet et al., 2007). Previous work has been conducted to explore the effect of storage 

age of L3 (time in storage) as a factor in the in vitro assessment of anthelmintic 

properties of tannin containing plant extracts (Castañeda-Ramírez et al., 2017). 

Increasing age of stored L3 has a negative impact on larval motility and migration 

assays, as well as exsheathment inhibition (Castañeda-Ramírez et al., 2017). The 

impact of adult worm age on L3 larvae exsheathment has not been studied. 

The variability in previous work in addition to our own findings supports a 

need for research exploring potential environmental factors (seasonal fluctuations) 

influencing larval development. There is a lack of concrete data related to the impact 

of seasonal changes, as well as the impact of age of the adult worm itself on egg and 
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larval performance in in vitro and in vivo assays. The first objective of this study was 

to determine if age of the adult worms in the host animal affects the ability of their 

eggs to hatch as well as viability and exsheathment of the resulting third stage H. 

contortus larvae used in in vitro and in vivo assays. The second objective of this study 

was to determine the effect of season on the adult worms in the host animal and on the 

ability of the eggs from these worms to hatch in vitro and larvae to exsheath in vitro 

and in vivo. The third and final objective of this study was to compare results for larval 

viability and exsheathment obtained from the in vitro and in vivo assay in order to 

determine correlation between the two assays. 

2. Materials and Methods 

2.1 Study Design 

The study design is depicted in Figure 1.  The project was designed to run in a 

series of four cycles corresponding to the beginning of the four seasons of the year 1) 

Fall (autumnal equinox, September 22, 2017); 2) Winter (Winter solstice, December 

21, 2017); 3) Spring (vernal equinox, March 20, 2018); 4) Summer (summer solstice, 

June 21, 2018). A fifth cycle was added as a replicate of the original fall cycle, which 

is termed ‘Fall 2’ (autumnal equinox, September 22, 2018). Daily temperature, 

humidity and precipitation data was obtained from the weather station at the 

University of Rhode Island’s Peckham Farm. Each cycle began (time (t) = 0) with the 

experimental infection of two donor lambs with 10,000 H. contortus L3 larvae 

obtained from previously infected donor animals. The larvae obtained from the 

previously donors was between 1 and 3 weeks old (kept in storage at 4℃ for no longer 
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than 3 weeks prior to infection dates). All donor animals were raised indoors from 

birth, with the exception of the Fall 2 lambs, which had limited access to pasture prior 

to being dewormed for infection. Fecal egg counts (FEC) and packed cell volume 

(PCV) were conducted at t = 0 and every week thereafter through all weeks of 

infection. Fecal samples were collected from each lamb for both egg recovery and 

larval culture beginning at four weeks of infection and continuing every four weeks 

through 16-20 weeks of infection (sampling was discontinued when egg counts fell 

below 300 eggs per gram). Upon the collection of the fecal sample, eggs were 

extracted from the feces and used in the egg hatch assay to determine egg hatchability. 

The remainder of the fecal sample was used to prepare fecal cultures that yielded L3 

larvae. The larvae were extracted from the culture samples and used in an in vitro 

exsheathment assay using CO2 treatment, as well as in an in vivo exsheathment assay 

using 4 ruminally fistulated ewes. 

 

 

 

 

 

 

Figure 1. Study Design 
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2.2 Study Subjects & Infection Monitoring 

All procedures used in this study were conducted with the approval of the 

Institutional Animal Care and Use Committee (IACUC) of the University of Rhode 

Island. Two sets of twin Dorset ram lambs born in March of 2017 were used for cycles 

Fall 1 and Winter (one set of twins per cycle). One set of twin Dorset-cross ewe 

lambs, born in September of 2017, was used for the Spring cycle and one set of 

genetically related (same sire) Dorset-cross ewe lambs, also born in September of 

2017, were used for the Summer cycle. Two genetically related (same sire) Dorset ram 

lambs, born in April of 2018, were used for the Fall 2 cycle. All lambs used for each 

seasonal cycle were experimentally infected with 10,000 H. contortus (2 lambs per 

season) at the start of cycle. Donor lambs for the Fall 1, Winter, Spring and Summer 

cycles were raised indoors and had no previous exposure to nematode infection. The 

donor lambs used in the Fall 2 cycle were exposed to pasture conditions for one month 

(August 2018)  and were dewormed prior to being infected for the trial. Four fistulated 

Dorset-cross ewes (~ 5 years old), housed at Peckham Farm, were used for in vivo 

exsheathment assays. Fistulated ewes were housed indoors with no pasture access. All 

animals (donor and fistulated) were fed a diet of grass mix hay produced at Peckham 

Farm, as well as a 16% complete commercial sheep pellet to meet their daily 

nutritional requirements. 

2.2.1 Packed Cell Volume and Fecal Egg Count 

Blood samples were taken weekly from each lamb and processed to determine 

packed cell volume (PCV) using the micro-hematocrit centrifuge method. Weekly 
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fecal egg counts (FEC) were determined on all infected animals using the modified 

McMaster technique (Whitlock, 1948) and a commercially available sodium nitrate 

flotation solution (Fecasol®, Vetoquinol U.S.A., Inc., Fort Worth, TX, USA, specific 

gravity- 1.200) with each egg counted representing 50 eggs/gram of feces.  

2.3 Egg Recovery and Egg Hatch Assay 

Fecal samples were collected rectally from donor lambs to be used for egg 

recovery. The feces collected were placed in a cooler and briefly (< 2 hours) stored in 

the refrigerator to avoid premature hatching of eggs. The fecal samples were then 

combined with water to create a slurry mixture, which was poured over sieves of 

decreasing sizes (1 mm, 355, 150, 38 and 25 μm) (Assis et al., 2003; Marie-

Magdeleine et al., 2009; Barone et al., 2018). Eggs were collected from the 38 and 25 

μm sieves using a salt solution (Fecasol®, Vetoquinol U.S.A., Inc., Fort Worth, TX, 

USA). The egg-containing solution was centrifuged, and eggs were collected using 

cover slips, rinsed using water and the final aqueous solution of eggs was used in the 

egg hatch assay that day. The egg hatch assay was conducted using established 

procedures (Assis et al. 2003; Marie-Magdeleine et al. 2009). Eggs were added (100 

eggs in 100 μl of water per well) to a 24-well flat-bottomed microtiter plate 

(CorningTM, FalconTM, Polystyrene Microplates, Corning Life Sciences, Tewksbury, 

MA, USA). Fecal water and DMSO (dimethyl sulfoxide) were added (1,900 μl) to 

each well to bring the final volume to 2 ml (Barone et al., 2018). A set of 5 wells was 

run for each lamb. The wells were incubated at 26°C for 24 hours and read under a 

microscope the following day to quantify eggs and larvae in order to determine 

percent egg hatchability (% Hatchability= # larvae/# eggs + larvae). 
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2.4 Larval Recovery 

Fecal samples were collected from infected donor lambs via rectal palpation to 

prepare fecal cultures using a modified version of the Baermann technique (Zajac and 

Conboy, 2012). The fecal samples collected were placed in a refrigerator for brief (< 2 

hours) storage before the cultures were prepared. For cultures, fecal samples were 

maintained in a humid environment and incubated at approximately 25°C for 7-14 

days. The fecal samples rested on cheesecloth and were flooded with water to recover 

hatched larvae. The flooded cultures sat for a minimum of 8 hours at room 

temperature in order for larvae to settle within the water solution. Excess water was 

siphoned off the top so that a concentrated larval solution was obtained. The 

concentrated larval solution was prepared in order to be used in the in vitro and in vivo 

exsheathment assays. 

2.5 Exsheathment Assays 

2.5.1 In vitro CO2 Exsheathment Assay 

The concentrated larval solution obtained from cultures was transferred to the 

laboratory prior to the set up of the in vitro CO2 exsheathment assay. The in vitro CO2 

exsheathment assay was conducted according to previously published procedures 

(Condor and Johnson, 1996; Barone et al., 2018).  Briefly, 2,000 L3 larvae were added 

to a polypropylene tube and Earle’s Balanced Salt Solution (EBSS, Sigma-Aldrich®, 

Inc., Natick, MA, USA) was added to bring the volume to 1 mL. An additional 1 mL 

of water was added to the tube to bring the final volume to 2 mL. Three experimental 

tubes and one ‘no CO2’ control tube was prepared for each of the two fecal samples 
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(four duplicates for each lamb). The three experimental tubes were exposed to CO2 

treatment using a modified version of the technique proposed by Conder and Johnson 

(1996). The four tubes were covered using Parafilm M® (Parafilm M®, Bemis 

Company, Inc., Neenah, WI). A glass pipet tip, connected to the CO2 tank was pushed 

through the Parafilm M® covering so that it was suspended in the larval solution. 

Solutions were bubbled with CO2 for 15 minutes each and tubes were resealed using 

Parafilm M® before being capped (Barone et al., 2018). The tubes were bubbled at 

temperatures slightly below average room temperature (18-22 °C). The capped tubes 

were incubated at 37°C for 18 hours. After the incubation period, the larvae were 

observed for viability (motility observed for 5 seconds) and presence of sheath. At 

least 100 live larvae were counted for each tube and results were expressed as percent 

viability (including exsheathed and ensheathed) and percent live exsheathment 

(percent motile exsheathed). Percentages for both viability and exsheathment were 

adjusted to the negative control (‘No CO2) values for each individual assay. 

Adjustments were made using the following formula: live exsheathment or viability 

(%) = 100 - (A – B)/(A) x 100 (Acharya et al., 2014). Where A = % viable or 

exsheathed in the water control and B = % viable or exsheathed in the CO2  replicates. 

2.5.2 In vivo Exsheathment Assay 

The L3 larvae were maintained at 4-6 °C for less than 24 hours followed by an 

18-24 hour readjustment period to room temperature prior to use in the in vivo assay. 

The exsheathment assay used for this experiment was modified from that of Brunet et 

al. (2007). Both concentration and viability were determined for each set of larvae. A 

total of 2,000 ensheathed L3 larvae were added to a capsule composed of a piece 
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Tygon® tubing (ID 9.5, OD 14.3 mm, Fisher Scientific, Hampton, NH) and two 8 μm 

Nunc TM Cell Culture Inserts (#140629, Thermo Scientific, Waltham, MA) on each 

end to allow free flow of rumen fluid throughout the tube.  A total of 8 capsules were 

prepared—4 capsules per donor lamb (1 capsule per donor per fistulated ewe). The 

capsules were each placed in a heat-sealed concentrate bag (R510, ANKOM 

Technology, Macedon, NY), to prevent large particles in the rumen from clogging the 

insert membrane. The enveloped capsules were tied to a 20 cm cord and suspended in 

the rumen of a fistulated ewe (two capsules/ewe). Four ewes were used, each receiving 

one capsule from each lamb. The capsules were removed after an exposure period of 8 

hours. The larvae in the capsules were observed for percent viability (motility 

observed for 5 seconds) and presence of sheath with approximately 150 live larvae 

being counted from each capsule. Results were expressed as percent viability 

(including ensheathed and exsheathed L3) and percent live exsheathment (percent 

motile exsheathed L3). 

2.6 Statistical Analysis 

2.6.1 Egg Hatch, in vitro and in vivo exsheathment assays 

         Data were analyzed using the GLIMMIX procedure in SAS (SAS Institute 

Inc., Cary, NC). The model included terms cycle (representing each seasonal cycle); 

worm age (age of donor infection); and cycle*worm age. An adjustment for multiple 

comparisons test was performed using Tukey-Kramer for simple effect comparisons of 

cycle*worm age least square means by cycle and by age. Significance of least square 

means was defined as p < 0.05.  
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2.6.2 Comparison of in vitro to in vivo assay 

         Data was analyzed using an analysis of variance (ANOVA) and means were 

separated with Dunnett’s t-test using the GLM procedure in SAS. 

3. Results: 

3.1 Experimental Infections 

 The amount of viability and live exsheathment data (in vitro and in vivo) that 

were collected throughout the trial varied between seasons due to persistence of the 

experimental infections. Donor infections persisted for at least 4 months for all 5 

seasons. The Fall 1 infection lasted 4 months, Winter and Summer lasted 5 months 

and Spring and Fall 2 infections persisted through 6 months, however the larvae 

harvested for the Fall 2 cycle at 6 months did not yield enough larvae for both in vitro 

and in vivo assays to be performed, so only the in vitro assay was performed. 

3.2 Larval Cultures 

Each month, L3 needed for in vitro and in vivo assay was cultured from donor 

lamb fecal samples. Unexpectedly, the time it took for larvae in culture to reach the L3 

stage varied between season and between twin donor animals within the same season 

(Table 1).  
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Table 1. Variability in rate of L3 development in culture 

 

a Larvae for one donor failed to develop to L3 stage at 7 days, but developed to L3 at 9 

days. A 9-day culture period was used. 
b Larvae for one donor failed to develop to L3 stage at both 7 and 9 days, but 

developed to L3 at 14 days. A 14-day culture period was used for the duration of the 

cycle due to continued failures at both 7 and 9 days for all consecutive months for one 

donor. 

-- No sample; infection did not persist in donor animals. 

 

 

 

 

 

 

 

 

Worm Age → 

(Months)  

Season ↓ 

 1      2 

 

 

     3       4       5   6 

    Time in Culture (Days)  

Fall 1  7 7 7 7 -- -- 

Winter  7 7 7   9 a   9 a -- 

Spring    9 a   9 a   14 b 14  14  14  

Summer    14 b 14  14  14 14 -- 

Fall 2    14 b 14 14 14 14 14 
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3.3 Effect of worm age and season on percent egg hatchability 

 Hatchability across all cycles throughout the entire trial (data not shown) was ≥ 

90% and ranged from 91 - 99%. Average percent hatchability across all months of 

testing for each season was lowest for the Summer cycle (95%) and highest for the 

Winter cycle (98%). Average percent hatchability across all seasons of testing for each 

month ranged from 96 - 97%.  There were no statistically significant differences for 

effect of worm age (p = 0.4), effect of season (p = 0.09), or effect of worm age*season 

(p = 0.07).  

3.4 Effect of worm age and season on in vitro and in vivo percent viability  

 3.4.1 Effect of season on in vitro and in vivo percent viability 

 Viability data for both the in vitro and in vivo methods were averaged across 

lambs and replicates for each month of testing for each seasonal cycle (Table 2). In 

vitro (p ≤ 0.0002) and in vivo (p ≤ 0.0001) viability varied by worm age across 

seasons. In vitro viability of larvae from eggs collected one month post-infection was 

higher during the Summer and Fall 2 cycles than the other cycles and larval viability 

from one-month old worms during the Spring cycle was higher than the Winter cycle 

(p ≤ 0.05) (Table 2). Season had no effect on viability for larvae from eggs collected > 

one month post infection. 

In vivo larval viability was lower during the Fall 1 and Winter cycles for larvae 

from one-month old worms and lower during the Fall 1 cycle only for larvae from two 

and four-month-old worms (p ≤ 0.05) (Table 1). In vivo larval viability was lower 

during the Winter cycle for five-month-old worms than the subsequent seasons (Table 
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2). There was no effect of cycle for larval viability for three-month-old worms, with 

all larval viability >96% for all seasons (p ≤ 0.05) (Table 2). Spring was the only 

seasonal cycle that yielded in vivo larval viability data for six-month-old worms. 

3.4.2 Effect of worm age on in vitro and in vivo percent viability 

Viability data for both the in vitro and in vivo methods was averaged for each 

month of testing for each seasonal cycle (Table 3). In vitro (p ≤ 0.0002) and in vivo (p 

≤ 0.0001) viability varied across different worm ages.  In vitro viability of larvae from 

worms aged 1 month were lower than the viability of larvae from older worms within 

the Fall 1 and Winter cycles and larval viability for larvae from one-month old worms 

was lower than the larval viability from worms aged 5 and 6 months within the Spring 

cycle (p ≤ 0.05) (Table 3). There were no differences in larval viability across worm 

ages within the Summer and Fall 2 cycles (p ≤ 0.05) (Table 3). 

Within the Fall 1 cycle the in vivo viability of larvae from one-month old 

worms was lower than older worms and the larval viability of the two and four-month-

old worms was lower than the larval viability from the three-month-old worms (p ≤ 

0.05) (Table 3). During the Winter cycle, the larval viability from the one-month old 

worms was again lower than larvae from the older worms and the larval viability from 

the five-month-old worms was less than that of the two and three-month-old worms (p 

≤ 0.05) (Table 3). There were no differences in viability between any worm ages 

during the Spring, Summer or Fall 2 cycle (Table 3). 
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Table 2. Effect of season on percent viability (in vitro and in vivo) of 

Haemonchus contortus larvae (L3) offspring from worms aged 1- 6 months.  

 

Season → 

Worm Age   

(Months) ↓ 

Fall 1 Winter Spring Summer Fall 2 

In vitro 1                       Percent Viability (%) 

1 89 ± 2 ab 90 ± 1 a 95 ± 1 b 100 ± 1 c 100 ± 1 c 

2 97 ± 1 96. ± 1 100 ± 2 99 ± 1 99 ± 1 

3 98 ± 1 99 ± 2 100 ± 2 100 ± 1 100 ± 1 

4 97 ± 1 99. ± 1 99 ± 1 100 ± 1 99 ± 1 

5 -- 100 ± 1 99 ± 1 100 ± 1 100 ± 1 

6 -- -- 99 ± 1 -- 100 ± 2 

In vivo 2      

1 68 ± 3 a 70 ± 2 a 92 ± 2 b 98 ± 2 b 99 ± 2 b 

2 81 ± 2 a 97 ± 2 b 90 ± 3 b 97 ± 2 b 98 ± 2 b 

3 96 ± 2 97 ± 3 99 ± 3 98 ± 2 99 ± 2 

4 85 ± 2 a 94 ± 2 b 98 ± 2 b 98 ± 2 b 99 ± 2 b 

5 -- 88 ± 2 a 98 ± 2 b 97 ± 2 b 99 ± 2 b 

6 -- -- 98 ± 2 -- -- 

 

1Larvae (2,000 ensheathed L3/replicate x 3 replicates per donor lamb(N=2)) were 

exposed to CO2 bubbling to induce exsheathment and incubated at 37°C for 18 hours. 

After incubation, all larvae were determined to be alive or dead (% live viability = 

total live L3/total L3). 

2Larvae (2,000 ensheathed L3/replicate x4 per donor lamb (N=2)) were added to a 

tygon tube capsule and suspended in the rumen of fistulated ewes for an 8-hour period. 

After rumen exposure, all larvae were determined to be alive or dead (% live viability 

= total live L3/total L3).  

All values are least square mean ± SEM 

-- No sample; infection did not persist in donor animals. 

Means with different superscripts across rows differ significantly (p ≤ 0.05) 
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Table 3. Effect of worm age on percent viability (in vitro and in vivo) of 

Haemonchus contortus larvae (L3) offspring within seasons. 

 

Worm Age → 

(Months)              

Season ↓ 

1 2 3 4 5 6 

In vitro 1      Percent Viability (%)  

Fall 1 89 ± 2 a 97 ± 1 b 98 ± 1 b 97 ± 1 b -- -- 

Winter 90 ± 1 a 96 ± 1 b 99 ± 2 b 99 ± 1 b 100 ± 1 b -- 

Spring 95 ± 1 a 100 ± 2 ab 100 ± 2 ab 99 ± 1 ab 99 ± 1 b 99 ± 1 b 

Summer 100 ± 1 99 ± 1 100 ± 1 100 ± 1 100 ± 1 - 

Fall 2 100 ± 1 99 ± 1 100 ± 1 99 ± 1 100 ± 1 100 ± 2 

In vivo 2       

Fall 1 68 ± 3 a 81 ± 2 b 96 ± 2 c 85 ± 2 b -- -- 

Winter 70 ± 2 a 97 ± 2 b 97 ± 3 b 94 ± 2 bc 88 ± 2 c -- 

Spring 92 ± 2 90 ± 3 99 ± 3 98 ± 2 98 ± 2 98 ± 2 

Summer 98 ± 2 97 ± 2 98 ± 2 98 ± 2 97 ± 2 -- 

Fall 2 99 ± 2 98 ± 2 99 ± 2 99 ± 2 99 ± 2 -- 

 

1Larvae (2,000 ensheathed L3/replicate x 3 replicates per donor lamb(N=2)) were 

exposed to CO2 bubbling to induce exsheathment and incubated at 37°C for 18 hours. 

After incubation, all larvae were determined to be alive or dead (% live viability = 

total live L3/total L3). 

2Larvae (2,000 ensheathed L3/replicate x4 per donor lamb (N=2)) were added to a 

tygon tube capsule and suspended in the rumen of fistulated ewes for an 8-hour period. 

After rumen exposure, all larvae were determined to be alive or dead (% live viability 

= total live L3/total L3).  

All values are least square mean ± SEM 

-- No sample; infection did not persist in donor animals. 

Means with different superscripts across rows differ significantly (p ≤ 0.05) 
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3.5 Effect of worm age and season on in vitro and in vivo percent live exsheathment 

3.5.1 Effect of season on in vitro and in vivo % live exsheathment 

Exsheathment data for both the in vitro and in vivo methods was averaged for 

each month of testing for each seasonal cycle (Table 4). In vitro (p ≤ 0.0001) and in 

vivo (p ≤ 0.0077) exsheathment varied within worm age across season. When 

comparing in vitro larval exsheathment of one-month old worms across season, the 

Fall 2 cycle was dramatically lower than all other seasons, and the larval exsheathment 

during the Summer cycle was greater than that observed in the Winter and Spring 

cycle.  Significantly depressed exsheathment of larvae from two-month-old worms 

was observed in both Fall cycles as compared to the other seasons and additionally the 

exsheathment during the Summer cycle was also lower than that measured during the 

Winter cycle.  For three-month-old worms the Summer exsheathment percentage was 

depressed over that of all other seasons. Larval exsheathment from four-month-old 

worms was also depressed during the Summer cycle but also during the Fall 1 cycle. 

Finally, the exsheathment of larvae from five-month-old worms was dramatically 

lower during the Summer cycle than all other cycles and the exsheathment during the 

Fall 2 cycle was significantly greater than all other cycles.  (p ≤ 0.05) (Table 4).  

In contrast to the variability observed for the in vitro larval exsheathment, there 

were no differences across seasonal cycles for in vivo exsheathment of larvae from 

one, two and four-month-old worms.  The in vivo exsheathment of larvae from three-

month-old lambs was greater during the Fall 1 cycle than for the Winter, Summer and 

Fall 2 cycles.  There was a suppression in the exsheathment of larvae from five-
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month-old worms during the Summer cycle as compared to the Winter cycle (p ≤ 

0.05) (Table 4).  

3.5.2 Effect of worm age on in vitro and in vivo percent live exsheathment 

Live exsheathment data for both the in vitro and in vivo methods was averaged 

for each month of testing for each seasonal cycle (Table 5). In vitro (p ≤ 0.0001) and 

in vivo (p ≤ 0.0077) exsheathment varied within season across different worm ages. In 

vitro exsheathment for the Fall 1 cycle was highly variable across the different worm 

ages with a significant depression in exsheathment of larvae from two and four-

month-old worms. Larval exsheathment did not vary across worm ages during the 

Winter cycle.  During the Spring cycle the exsheathment of larvae from one and six-

month-old worms differed.  Exsheathment of larvae during the Summer and Fall 2 

cycles was highly variable across the various worm ages with the highest larval 

exsheathment observed from one-month old worms during the Summer cycle and 

from five-month-old worms during the Fall 2 cycle.  

In vivo exsheathment during the Fall 1 cycle was lower for larvae from one and 

two-month-old worms, as compared to three-month-old worms (p ≤ 0.05) (Table 5). 

No differences were observed in larval exsheathment from worms of any age during 

the Winter and Spring cycles. During the Summer cycle, exsheathment of larvae from 

four-month-old worms was greater than that from five-month-old worms and during 

the Fall 2 cycle exsheathment percentage was greater for the larvae from four-month-

old worms than the one-month old worms (p ≤ 0.05) (Table 5). 
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Table 4. Effect of season on percent exsheathment (in vitro and in vivo) of 

Haemonchus contortus larvae (L3) offspring from worms aged 1- 6 months. 

 

Season → 

Worm Age 

(Months) ↓ 

Fall 1 Winter Spring Summer Fall 2 

In vitro 1                                                           Percent Exsheathment (%) 

Percent Exsheathment (%) 1 64 ± 6 ab 63 ± 3a    68 ± 3 a   81 ± 3 b 21 ± 3 c 

2 24 ± 4 c 67 ± 3 a  67 ± 5 ab  51 ± 3 b 31 ± 3 c 

3 68 ± 4 a 69 ± 5 a 67 ± 5 a 24 ± 3 b 77 ± 3 a 

4 22 ± 3 a 63 ± 3 b 56 ± 6 b 15 ± 3 a 60 ± 3 b 

5 -- 68 ± 3 a 62 ± 3 a 17 ± 3 b 97 ± 3 c 

6 -- -- 51 ± 3 -- 45 ± 5 

In vivo 2      

1 63 ± 8 70 ± 6 64 ± 6 51 ± 6 49 ± 6 

2 69 ± 6 74 ± 6 77 ± 8 72 ± 6 64 ± 6 

3 90 ± 6 a 63 ± 8 b 75 ± 8 ab 61 ± 6 b 62 ± 6 b 

4 71 ± 6 74 ± 6 56 ± 6 72 ± 6 77 ± 6 

5 -- 78 ± 6 a 64 ± 6 ab 50 ± 6 b 61 ± 6 ab 

6 -- -- 74 ± 6 -- -- 

 

1Larvae (2,000 ensheathed L3/replicate x 3 replicates per donor lamb(N=2)) were 

exposed to CO2 bubbling to induce exsheathment and incubated at 37°C for 18 hours. 

After incubation, all larvae were determined to be alive or dead (% live exsheathment 

= total live exsheathed L3/total live L3). 

2Larvae (2,000 ensheathed L3/replicate x4 per donor lamb (N=2)) were added to a 

tygon tube capsule and suspended in the rumen of fistulated ewes for an 8-hour period. 

After rumen exposure, all larvae were determined to be alive or dead (% live 

exsheathment = total live exsheathed L3/total live L3).  

All values are least square mean ± SEM 

-- No sample; infection did not persist in donor animals. 

Means with different superscripts across rows differ significantly (p ≤ 0.05) 
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Table 5. Effect of worm age on percent exsheathment (in vitro and in vivo) 

of Haemonchus contortus larvae (L3) offspring within seasons. 

 

Worm Age → 

(Months)  

Season ↓ 

1     2 

 

 

    3       4      5     6 

In vitro 1   Percent Exsheathment (%)  

Fall 1 64 ± 6 a 24 ± 4 b 68 ± 4 a 22± 3 b - - 

Winter 63 ± 3 67 ± 3 69 ± 5 63 ± 3 68 ± 3 - 

Spring 68 ± 3 a 67 ± 5 ab 67 ± 5 ab 56 ± 6 ab 62 ± 3 ab 51 ± 3 b 

Summer 81 ± 3 a 51 ± 3 b 24 ± 3 c 15 ± 3 c 17 ± 3 c - 

Fall 2 21 ± 3 a  31 ± 3 ab 77 ± 3 d 60 ± 3 c 97 ± 3 e 45 ± 5 bc 

In vivo 2       

Fall 1 63 ± 8 a 69 ± 6 a 90 ± 6 b 71 ± 6 ab - - 

Winter 70 ± 6 74 ± 6 63 ± 8 74 ± 6 78 ± 6 - 

Spring 64 ± 6 77 ± 8 75 ± 8 56 ± 3 64 ± 6 74 ± 6 

Summer 51 ± 6 ab 72 ± 6 ab 61 ± 6 ab 72 ± 6 a 50 ± 6 b - 

Fall 2 49 ± 6 a 64 ± 6 ab 62 ± 6 ab 77 ± 6 b 61 ± 6 ab - 

 

1Larvae (2,000 ensheathed L3/replicate x 3 replicates per donor lamb(N=2)) were 

exposed to CO2 bubbling to induce exsheathment and incubated at 37°C for 18 hours. 

After incubation, all larvae were determined to be alive or dead (% live exsheathment 

= total live exsheathed L3/total live L3). 

2Larvae (2,000 ensheathed L3/replicate x4 per donor lamb (N=2)) were added to a 

tygon tube capsule and suspended in the rumen of fistulated ewes for an 8-hour period. 

After rumen exposure, all larvae were determined to be alive or dead (% live 

exsheathment = total live exsheathed L3/total live L3).  

All values are least square mean ± SEM 

-- No sample; infection did not persist in donor animals. 

Means with different superscripts across rows differ significantly (p ≤ 0.05) 
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3.6 Comparing the in vitro assay to in vivo assay 

3.6.1 Comparing in vitro vs. in vivo percent viability  

Viability data from both in vitro and in vivo experiments was averaged across 

all seasons of testing for each month of worm age (Figure 2) and season (Figure 3). In 

vitro viability was higher than in vivo for L3 from worms aged 1 month (p ≤ 0.05) 

(Figure 2).  Across worm age, in vitro viability was higher than in vivo for the Fall 1 

and Winter cycles (p ≤ 0.05) (Figure 3). 
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Figure 2. Effect of worm age on percent viability of Haemonchus contortus 

comparing the in vitro and in vivo methods. Data for the two assays (in vitro  and in 

vivo ) was averaged across all seasons for each worm age (month). ( ) indicates 

number of seasonal cycles analyzed for each worm age. Worm age 6 months was 

excluded from analysis due to insufficient amount of data dictated by infection 

persistence. All values are Mean ± SEM. Means under bracket differ significantly 

within the same worm age (months) (p ≤ 0.05). 
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Figure 3. Effect of season on percent viability of Haemonchus contortus comparing 

the in vitro and in vivo. Data for the two assays (in vitro  and in vivo ) was 

averaged across all worm ages (months) tested within each season. ( ) indicates 

number of worm ages (months) analyzed for each seasonal cycle. All values are Mean 

± SEM.  Means under bracket differ significantly within the same seasonal cycle (p ≤ 

0.05). 
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3.6.2 Comparing in vitro vs. in vivo percent live exsheathment 

 Live exsheathment data from both in vitro and in vivo experiments was 

averaged across all seasons of testing for varying worm ages (Figure 4) and season 

(Figure 5). The mean percent live in vitro exsheathment was lower than in vivo for 

worms aged 2 and 4 months (p ≤ 0.05) (Figure 4).  Across season the in vitro 

exsheathment was lower than in vivo for seasons Fall 1 and Summer (p ≤ 0.05) (Figure 

5). 
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Figure 4. Effect of worm age on percent live exsheathment of Haemonchus contortus 

comparing the in vitro and in vivo methods. Data for the two assays (in vitro  and in 

vivo ) was averaged across all seasons for each worm age (month). ( ) indicates 

number of seasonal cycles analyzed for each worm age. Worm age 6 months was 

excluded from analysis due to insufficient amount of data dictated by infection 

persistence. All values are Mean ± SEM. Means under bracket differ significantly 

within the same worm age (months) (p ≤ 0.05). 
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Figure 5. Effect of season on percent live exsheathment of Haemonchus contortus 

comparing the in vitro and in vivo methods. Data for the two assays (in vitro  and in 

vivo ) was averaged across all worm ages (months) tested within each season. ( ) 

indicates number of worm ages analyzed for each seasonal cycle. All values are Mean 

± SEM. Means under bracket differ significantly within the same seasonal cycle (p ≤ 

0.05). 
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4. Discussion: 

 This study determined that both season and age of the worm producing L3 

offspring have an effect on the larvae’s ability to exsheath both artificially, in vitro as 

well as within the rumen, in vivo. Both season and age of worm also impacted post-

assay viability of larvae as well. Although these two factors had an effect on larval 

exsheathment and viability, there were no apparent effects on egg hatchability. When 

comparing the two exsheathment assays to one another, it was found that the in vitro 

assay yielded higher viability, but lower exsheathment on average than the in vivo 

assay. Another key difference that was detected between the two assays was the 

amount of variability for exsheathment results using the in vitro assay compared to the 

in vivo assay, especially when looking at the Summer and Fall seasonal cycles. 

 The method used in the study for assessing exsheathment in vitro is a 

modification of the method proposed by Conder and Johnson (1996) and involves 

forcing CO2 gas into tubes containing larvae and ‘bubbling’ the tubes at 20℃ for 15 

minutes in order to activate exsheathment and then placing these tubes in an incubator 

for 18 hours at 37℃ (Conder and Johnson, 1996; Barone et al., 2018). Previous work 

has demonstrated successful exsheathment induction using this method with results 

indicating >97% larval exsheathment rates (Barone et al., 2018). Other studies using 

CO2 as an exsheathment trigger have found that heat shock (rapidly heating larvae to 

40 ℃) acts in combination with CO2 to produce high levels of exsheathment (Bekelaar 

et al., 2018). Bekelaar et al. (2018) found that administering the two triggers 

simultaneously yielded higher exsheathment rates compared to administering them 
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sequentially (simultaneous rates of >75% at 24 hours and 94% exsheathment at 120 

hours) (Bekelaar et al., 2018). When the larvae were exposed to CO2 30 minutes prior 

to being subjected to heat shock, researchers observed very low levels of 

exsheathment (<25% at 120 hours) (Bekelaar et al., 2018). These results contradict 

findings in previous work as well as in the current study where exsheathment rates 

>90% were observed after just 18 hours for larvae exposed to CO2 prior to ‘heat 

shock’ (incubation at 37℃) (Barone et al., 2018).  

 Larval exsheathment has been examined in vivo in previous studies using a 

variety of different methods (Sommerville et al., 1957; Hertzberg et al., 2002; Brunet 

et al., 2007). The containment capsule used in the current study was composed of a 

piece of tygon tubing capped with two Nunc Cell Culture Inserts (1 at either end of the 

tube) which is slightly different from those used by Brunet et al. (2007) which were 

composed of a microtube capped with 1 Nunc Cell Culture Insert. In this previous 

study (Brunet et al., 2007), researchers were able to achieve exsheathment rates of 

approximately 80% after 2.7 hours of incubation within the rumen of cannulated 

sheep, which differs from the results of the current study. Average in vivo 

exsheathment (across all months and seasons of testing) after 8 hours of rumen 

incubation was ~67% (ranged from 49-90%), which is lower than that which has been 

previously observed in a shorter amount of time (Brunet et al., 2007).  The highest rate 

for in vivo exsheathment (~90%) was observed in larvae from worms aged three 

months during the Fall 1 cycle. Findings from other in vivo studies have been variable 

in terms of time it takes to achieve high levels of exsheathment, with an older study 

reporting exsheathment rates of 85% after 5 hours, and a more recent study reporting 
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90% exsheathment after just one hour (results that have not been replicated in any in 

vivo work since) (Sommerville et al., 1957; Hertzberg et al., 2002). Previous studies 

performed within our lab have yielded in vivo exsheathment rates >80% after 8 hours 

of incubation, but exsheathment rate varied greatly between different batches of 

larvae. In the current study, in vivo exsheathment was >75% for multiple timepoints of 

testing within the different seasons, but this exsheathment rate was not consistent for 

the duration of the entire trial. Variability in larval exsheathment performance for H. 

contortus has been noted in early in vivo studies as well (Sommerville et al., 1957). 

Factors such as breed/age of fistulated animals, as well as age/source of L3 (donor 

animal and culture conditions) may contribute to observed differences in in vivo 

exsheathment rates across studies. Hertzberg et al. (2002) used 2-year-old White 

Alpine Mountain sheep for their study but did not include information on source of L3 

(donor animal and culture conditions), but the authors mentioned that larvae used was 

aged <3 months. Brunet et al. (2007) used Texel sheep (age of sheep not noted), and 

the authors specified that larvae used in their experiments was obtained from donor 

goats (no breed is mentioned) and the larvae was aged 2-3 months. Sommerville et al. 

(1957) does not include information on the age/breed or diet of the fistulated sheep 

used in their study, nor the age/source of L3 (donor animal and culture conditions) 

used for experiments. It is important to note that none of these studies included 

information regarding time of year/season in which the in vivo experiments were 

conducted (Sommerville et al., 1957; Hertzberg et al., 2002; Brunet et al., 2007). The 

current study used Dorset-cross ewes, 5-6 years old, which are significantly older than 

the sheep used in the study by Hertzberg et al. (2002). Hertzberg et al. (2002) reported 
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that the researchers observed minimal differences in exsheathment rates between 

different fistulated sheep on trial.  Exsheathment rates in the current study did vary 

between the different ewes (average standard deviation throughout the entire trial was 

15 ± 5%), however this would have been a consistent factor throughout the study. 

Another key difference between this study and previous in vivo work is source of L3 

used in experiments. Previous studies have reported using larvae 1-3 months old, but 

the larvae used in our experiments was always freshly harvested L3 from culture (i.e. 

<2 days old) (Hertzberg et al., 2002; Brunet et al., 2007). Higher exsheathment rates 

(>80%) have been observed in previous studies, as well as in our own laboratory, all 

of which used larvae aged 1-3 months (Hertzberg et al., 2002; Brunet et al., 2007). It 

has been previously suggested that younger L3 may exsheath more readily than older 

L3 and it has been found that increasing larval age can negatively impact other 

parameters such as larval migration and motility (Hertzberg et al., 2002; Castaneda-

Ramirez et al., 2017). These findings contradict the results of the current study (lower 

in vivo exsheathment rates for younger larvae), but there is a lack of concrete evidence 

to definitively state that younger larvae will always exsheath more readily than older 

larvae. More work should be conducted to compare exsheathment rates of fresh 

collected larvae and aged larvae that has been in storage in order to better understand 

larval behavior patterns in in vivo assays. Due to the lack of consistency and 

discrepancies in methodology descriptions between previous in vivo studies, it is hard 

to directly compare the results from each study to one another and future work should 

focus on controlling for the factors outlined above. 
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 The current study was the first to statistically compare the results using the two 

specific exsheathment methods (in vitro and in vivo) and it was found that the in vitro 

and in vivo assays yielded different results for both exsheathment rate and post-assay 

viability rate. The in vitro assay had statistically higher post-assay viability results for 

larvae from worms aged 1 month and for the Fall 1 and Winter cycles when compared 

to the in vivo results, as well as higher viability on average across all seasons and 

months of testing. These results are due in part to the fact that the in vitro assay is 

tightly controlled and larvae in the tubes are only exposed to water, Earle’s Balanced 

Salt Solution and CO2, while the larvae in the in vivo capsules encounter the rumen 

environment within a live animal. The opposite trend was observed for exsheathment, 

with the in vivo assay yielding statistically higher exsheathment for larvae from worms 

aged 2 and 4 months and for the Fall 1 and Summer cycles, as well as higher 

exsheathment on average across all seasons and months of testing compared to in 

vitro. In vivo exsheathment was also more consistent across seasons and worm ages, 

when compared to in vitro, which would indicate that the in vivo assay may be more 

reliable for observing ‘normal’ exsheathment rates. The greater consistency using the 

in vivo assay may be due to the presence of rumen fluid for the larvae to exsheath in. 

A previous study focused on testing larval exsheathment responses to temperature 

change both in CO2 saturated rumen fluid and CO2 saturated artificial buffer (Bekelaar 

et al., 2019). The researchers noted in the results that H. contortus larvae showed a 

significantly lower exsheathment response rate to slow temperature increases in 

artificial buffer compared to rumen fluid (Bekelaar et al., 2019). The current study 

compared the in vitro and in vivo assays to one another strictly in terms of seasonal 
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and age of worm effects, but more comparison work can be done to determine how 

well the assays correlate. It would be interesting for work in the future to compare the 

assays using different animals (i.e. sheep and goats), different types of infections 

(experimental vs. natural), different isolated strains of H. contortus as well as in 

different nematode species that exsheath in the rumen such as O. ostertagi and T. 

circumcincta. 

 Variability in in vitro exsheathment during the late Summer and early Fall 

season has been observed in our lab previously (unpublished data). Variation in 

environmental conditions has been identified as a key factor impacting the life cycle of 

H. contortus (Capitini et al., 1990; Gatongi et al., 1998; Waller et al., 2004; Wang et 

al., 2014; Wang et al., 2018; Rose et al., 2016). Limited work exists that examines the 

specific relationship between environment and the exsheathment stage of the H. 

contortus life cycle. It is interesting to note that the season or time of year that studies 

are performed is typically not reported. In this study, we found there to be a ‘seasonal 

effect’ on both in vitro and in vivo exsheathment and viability, especially for 

exsheathment during the Fall and Summer cycles. The Winter and Spring cycles 

yielded more consistent exsheathment rates within and between cycles for both in 

vitro and in vivo. The Fall cycles (one and two) both yielded patterns of variability for 

in vitro exsheathment, and even more interestingly, these patterns did not match each 

other. In both cycles, exsheathment rates showed a pattern of increasing and 

decreasing between consecutive months of testing, but the exsheathment rates for the 

individual months did not match between the two cycles. Exsheathment rates for 

months 1 and 4 differed between the two cycles but were similar to one another in 
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months two and three. In vitro exsheathment was the lowest (averaged across all 

months of testing) for the Summer cycle, with exsheathment being <25% for months 

three, four and five. Donor lambs used for the Summer cycle were infected in late June 

of 2018 and so in vitro and in vivo exsheathment assays were performed in late July, 

August, September, October and November for months one-five of the infection, 

respectively. Low exsheathment (< 32%) was also observed for the first two months of 

the Fall 2 cycle, corresponding to assay dates in October and November The patterns 

of variability observed for the Fall 1, Summer and Fall 1 cycles were not replicated in 

the in vivo assay, which may indicate that the in vitro assay itself may be contributing 

to these observed differences. In order to replicate the observed trends, it would be 

useful to test different in vitro methods (Bahuaud et al., 2006; Bekelaar et al., 2018) 

during the Fall season using the same batch of larvae, to see if this trend exists using 

other assays.  

Temperature/seasonal factors influencing the host animal’s immune response 

can also have an impact on the infection, and therefore the larval offspring harvested 

from an infection. Work has been done to examine the relationship between heat stress 

and susceptibility to H. contortus infection, and researchers concluded that susceptible 

sheep displayed higher stress (high cortisol and FEC) for a longer period of time when 

compared to sheep bred for resistance (Swarnkar and Singh, 2017). In a follow up 

study, researchers found there to be a positive relationship between temperature 

humidity index (THI) and FEC as well as adult worm burden (Swarnkar and Singh, 

2018). In the current study, FEC and worm burden were not examined, but the 

findings in previous studies may indicate that heat stress, as well as THI may influence 
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infection development, and therefore the resulting L3 larvae and that this response 

may be a function of genetic susceptibility to parasitic infection. Future work should 

focus on testing this hypothesis, as host animal immunity plays a major role in H. 

contortus infection development.  

 Time in storage (age of larvae) has been identified as a factor influencing H. 

contortus larval exsheathment (Slocombe and Whitlock, 1970; Chyllinksi et al., 2015; 

Casteñada-Ramírez et al., 2017). The age of the adult worm producing the larvae has 

yet to be explored as a potential factor influencing exsheathment of the resulting L3 

offspring. Research focusing on the relationship between adult worm and larvae 

offspring is limited for the species H. contortus but has been looked at for the 

commonly studied nematode species, C. elegans (Klass et al., 1977). There is an 

overwhelming amount of work that has been done to examine C. elegans as a model 

for parasitic nematodes, which has been reviewed by different authors several times 

within the last 20 years (Hashmi et al., 2001; Geary and Thompson et al., 2001; 

Gilleard, 2004). For the species C. elegans, it has been found that parental (adult 

worm) age influences progeny lifespan, with progeny from younger worms showing 

greater mean lifespans (days) over time, compared to those from older worms (Klass 

et al., 1977). Similarly, it was found that parental (adult worm) lifespan had a direct 

impact on progeny lifespan, again with progeny from worms with longer lifespans 

producing offspring with greater lifespans compared to those with parental worms 

with shorter lifespans (Klass et al., 1977). The relationship between maternal adult C. 

elegans and resulting offspring has been furthered studied and it has been determined 

that maternal age influences the phenotype of the progeny, with young maternal adults 



www.manaraa.com

 

84 

 

(1 day old) producing progeny with a lower ‘fitness’ (Perez et al., 2017). It is 

hypothesized that the differences observed between progeny from young and old 

maternal adult worms may be caused by age-dependent alterations in the formation of 

the lipoprotein complex vitellogenin within the embryo (Perez et al., 2017). Similar 

work has been done with other invertebrate species including B. manjavacas and D. 

melanogaster, supporting the hypothesis that maternal age can have a negative impact 

on offspring fitness and viability (Bock et al., 2019; Bloch et al., 2017). Although 

these patterns have not been explored in the species H. contortus specifically, there is 

an abundance of evidence to support the notion that parental age can influence traits in 

resulting offspring. The results of this study both support and contradict findings from 

previous studies in other species. The current study found there to be various 

differences in in vitro exsheathment between larvae from adult worms of different 

ages, with cycles Spring and Summer showing a negative correlation with adult worm 

age. The opposite was seen for in vitro and in vivo viability, with cycles Fall 1, Winter 

and Spring all yielding lower viability for larvae from worms aged 1 month compared 

to larvae from older worms. These findings indicate that age of an infection in a donor 

animal used for research can influence larvae performance in different exsheathment 

assays and should be considered when crafting the study design of the study. 

This study was designed to examine the effects of season and age of the adult 

worm on larval exsheathment.  Other factors, however, that could potentially be 

contributing to the observed differences, could not be controlled for in the statistical 

model.  Animal resources were not available that would have enabled us to control for 

genetic relatedness, gender, as well as age within each of the different seasons 



www.manaraa.com

 

85 

 

therefore a decision was made to maximize, to the extent possible, the genetic 

relatedness between the donor animals used. It has been previously determined that 

age of host animal can influence larval development in trichostrongyle infection, with 

mature ewes demonstrating a lower development of larvae to L3 stage when compared 

to development patterns in 3-month-old lambs (Jorgensen et al., 1998). Due to higher 

susceptibility to H. contortus infection in young animals, lambs < 9 months old are 

typically used in research involving H. contortus experimental infection (Gonzalez et 

al., 2008; Schichowski et al., 2010; Katiki et al., 2012; Gressler et al., 2014; Tonin et 

al., 2014). The current study used lambs aged 6 months for the Fall 1, Spring and Fall 

2 cycles, and lambs aged 9 months for the Winter and Summer cycles. Research has 

been conducted to compare immune responses of lambs aged 6 and 9 months 

(Hohenhaus et al., 1995; Kooyman et al., 2000). One particular study found that 

antibody titers against H. contortus increased significantly between 6 and 9 months of 

age (Hohenhaus et al., 1995). Similarly, another study determined that lambs aged 6 

months were 6% less protected against H. contortus infection post-vaccination when 

compared to 9-month-old lambs (Kooyman et al., 2000). In the current study, fecal 

egg counts were not statistically analyzed, but it is important to mention that on 

average, 6-month-old lambs yielded higher fecal egg counts across seasonal cycles 

compared to 9-month-old lambs. This finding is consistent with that of previous 

studies that 6-month-old lambs display a lower immune response to H. contortus 

compared to 9-month-old lambs. It is clear that immune responses of lambs aged 6 and 

9 months do differ, therefore the age of the donor animal should be controlled for in 

future studies as a potential factor influencing larval behavior in experimental assays. 
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It has also been determined that host immunity can have an impact on adult female 

nematode fecundity in GIN species (Strain et al. 2002; Sargison et al., 2011). In the 

current study, there were differences in infection persistence (a measure of fecundity) 

between the different seasonal cycles, with the Spring and Fall 2 cycles persisting to 6 

months (6-month-old donor lambs) and the Winter and Summer cycles persisting to 5 

months (9-month-old donor lambs). Interestingly, the Fall 1 cycle also used 6-month-

old donor lambs and did not persist past 4 months. To date, there are no studies that 

explicitly examine how donor lamb age could influence larval performance in 

exsheathment assays, and so future exsheathment studies (in vitro and in vivo) should 

examine lamb age in more depth. 

 As previously mentioned, donor lamb sex could not be controlled for in the 

statistical model. Genetic relatedness was a key priority in selecting donor lambs for 

infection and so gender differed across seasons with the Fall 1, Winter and Fall 2 

cycles using male donor lambs and the Spring and Summer cycles using female donor 

lambs. Previous work has been conducted to compare male and female lambs in terms 

of H. contortus infection development patterns (Barger, 1993; Luffau et al., 1981; 

Adams, 1989; Albers et al., 1989; Woollaston et al., 1990; Shaw et al., 1995), but 

findings from these studies contradict one another. While some studies report male 

lambs as generally more susceptible to nematode infection when compared to females 

(Barger, 1993; Luffau et al., 1981; Adams, 1989), other studies report no consistent 

differences between the two genders (Albers et al., 1989; Woollaston et al., 1990). 

One particular study even reported that males on trial had significantly lower fecal egg 

counts than females on trial, and the researchers noted that this finding contradicts 
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research within the same field (Shaw et al., 1995). More recent work focusing on 

Teladorsagia circumcincta, found that male lambs on trial had higher fecal egg counts 

and higher adult worm burden at necropsy when compared to female lambs, but the 

authors mentioned that this difference may be due to male lambs ingesting more grass 

(i.e. more larvae) (Abuargob and Stear, 2014). Future studies are needed to determine 

the effect of donor lamb gender on exsheathment of resulting L3.  

Although it was not outlined as a main objective, this study uncovered 

variability in L3 development patterns. Culture periods varied between 7-14 days 

across different seasons. In our laboratory, the standard protocol for culturing larvae 

involves a 14-day incubation of fecal matter at room temperature (~23℃). Prior to the 

start of the trial, this protocol was modified to a 7-day incubation period at room 

temperature due to observations of low viability (<90%) upon harvest of L3 after 14 

days. There is a considerable amount of variability in H. contortus culture protocols 

across previously conducted studies, with some reporting a culture period of 5 days at 

28℃ and others, 14 days at 23℃ (Casteñada-Ramírez et al., 2017; Bekelaar et al., 

2018). There are multiple studies that do not describe/specify culturing procedures and 

so the exact time period for L3 development is unknown for these studies (Alonso-

Diaz et al., 2008; von Son-de Fernex et al., 2012; Klongsiriwet et al., 2015; Barone et 

al., 2018). It is known that temperature and humidity have a direct impact on the 

development of trichostrongylid nematodes (Pandey et al., 1989; Rossanigo and 

Gruner, 1995). Cultures in this study were incubated at room temperature, but were 

not kept in temperature controlled incubators and so temperatures conditions did 

fluctuate with a range of 18-26℃. It is possible that small fluctuations in temperature 
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could have lead to changes in development patterns of larvae, but other factors, 

particularly genetic factors, may be responsible for the observed differences. This 

study observed differences in development time period for larvae from same sex twin 

donor lambs, as well as the previously mentioned differences in average fecal egg 

counts and patterns of infection persistence.  Although there is a large body of work 

that has been done to study genetic factors influencing H. contortus infection 

particularly in terms of susceptibility and/or  resistance to GIN infection in host 

animals (Nieuwoudt et al., 2002; Marshall et al., 2009; Alba-Hurtado et al., 2010; 

Estrada et al., 2016), future studies are needed to determine the impact of host animal 

genetics on larval development under laboratory culture conditions. Further research is 

needed to standardize laboratory culture protocols, including control for donor 

genetics, gender and immune status as well as laboratory environmental conditions.  

 

5. Conclusion 

 This study was the first to monitor and compare exsheathment patterns of 

Haemonchus contortus both in vitro and in vivo according to all four seasons in order 

to uncover patterns associated with seasonality. This study also examined the effect of 

age of the adult worm producing larvae offspring that are used in exsheathment assays 

and how this may play a role in larval performance. Evidence for an effect of worm 

age*season was apparent for larval exsheathment as well as viability both in vitro and 

in vivo but was not observed for egg hatchability. Upon comparing the in vitro and in 

vivo assays to one another, a pattern for higher in vitro viability, but lower 

exsheathment was uncovered. Another key finding was the evident variability in the 
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exsheathment results for the in vitro assay, particularly during the Fall and Summer 

cycles. The results of the current study should be explored further in order to confirm 

the specific roles that seasonality and age of adult worm have on H. contortus viability 

and exsheathment. Ultimately, this study was able to uncover new information that 

can inform future research efforts to combat GIN infection in small ruminants. 
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CHAPTER III 

FUTURE RESEARCH DIRECTIONS 

Introduction: 

 There were three main objectives outlined for this research. The first objective 

was to test the effects of both season as well as H. contortus worm age on hatchability 

of resulting eggs in vitro. The second objective was to test the effects of the same two 

factors on viability of resulting larvae (L3) and their ability to undergo exsheathment 

both in vitro using CO2 and in vivo in rumen fistulated ewes. The final objective of the 

study was to statistically compare results from the in vitro and in vivo exsheathment 

assays to determine how well they correlate to one another. For the first objective of 

the research, it was determined that neither season nor age of worm had any impact on 

hatchability of H. contortus in vitro. For the second objective, it was found that both 

season and worm age had an impact on viability and exsheathment of H. contortus L3 

in vitro and in vivo. For the final objective, differences between the in vitro and in vivo 

assay were detected according to both effect or season and worm age. In addition to 

the primary findings of the study, this work uncovered information about larval 

development patterns in culture, with some larvae developing to L3 stage in 7 days 

and other samples requiring a 14-day period to reach L3 stage. More research is 

needed to explore the effects of seasonal changes and worm age on larval performance 

in different experimental assays. Additionally, exsheathment studies in the future 

should focus on comparing different exsheathment assays (in vitro and in vivo) to one 

another in order to uncover trends for how well assays correlate. Lastly, it is important 

to fully understand larval development patterns in culture and why certain batches of 
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larvae develop quicker than others, so more work is needed to confirm the findings in 

the current study. These areas for future research are described in more detail below. 

Variability of larval exsheathment according to seasonal changes and worm age: 

 A considerable amount of variability in exsheathment rates was observed for 

the Fall 1, Summer and Fall 2 cycles. The observed variability in the Fall 1 cycle 

called for the addition of the Fall 2 cycle to the trial, in order to see if the pattern of 

variability repeated itself. Interestingly, the Fall 2 cycle yielded variable 

exsheathment, but the exact pattern observed in the first Fall cycle was not replicated. 

Both cycles were characterized by alternating rates of exsheathment (high and low) in 

consecutive months, but the cycles differed from one another in terms of the rates 

observed for each individual month of testing. In the Summer cycle, exsheathment 

started out high (~81%) and steadily decreased over the five months of testing (~17% 

in month five). These patterns of variability were not seen in the in vivo assay, which 

would indicate that perhaps the in vitro assay itself may be contributing to these 

observed differences, in addition to seasonal factors. This hypothesis should be tested 

in future research involving the comparison of multiple in vitro assays during different 

seasons using larvae from worms of different ages to see if any variability patterns can 

be detected using other assays. It would be ideal for future studies to control for donor 

lamb age and sex to eliminate the potential influence these factors may have on in 

vitro exsheathment. 
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Comparing in vitro and in vivo exsheathment assays: 

 In comparing the two exsheathment assays (in vitro and in vivo) to one 

another, it was found that the in vitro assay tended to yield higher post-assay viability, 

but lower exsheathment, on average, compared to that of the in vivo assay. Statistically 

significant differences in viability between the two assays were observed for larvae 

from worms aged one month (across all seasons) and for Fall 1 and Winter (across all 

worm ages). For exsheathment, significant differences between the two assays were 

observed for larvae from worms aged two and four months (across all seasons) and for 

the Fall 1 and Summer cycles (across all worm ages). Future exsheathment studies 

should focus on comparing in vitro and in vivo exsheathment assays to one another in 

order to determine if the assays are accurately assessing larval exsheathment. In 

addition to comparing the assays to one another in general, more work is needed to 

explore the influence of season and worm age and how these factors may be affecting 

larval exsheathment differently in in vitro and in vivo assays. The two specific 

exsheathment assays used in this study are not widely used in this field, and so more 

work using these exact methods is required to test their reliability. 

Variability in larval development to L3 under different culture conditions: 

 Development patterns of H. contortus eggs to L3 stage differed according to 

seasonal cycle. While larvae developed to L3 stage at room temperature in just 7 days 

for the Fall 1 cycle and the majority of the Winter cycle, larvae failed to develop at 

this rate for the Spring, Summer and Fall 2 cycles and required more time (9-14 days) 

to do so. What is even more intriguing, is that the development patterns of larvae from 

related donor lambs used within the same cycle differed from one another. For 
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example, in the Spring cycle, larvae from one twin donor lamb took longer to develop 

(14 days) than larvae from the other twin donor lamb (9 days). This is also true for the 

Fall 2 cycle, with one donor lamb producing larvae that developed in culture to L3 

stage as early as 7 days, while larvae from the other twin required a 14-day culture 

incubation. Individual host infection factors, such as genetic susceptibility to GIN, 

differences in egg laying and/or development or differences within the abomasal 

environment between donor animals should researched in more depth in future work. 

In addition to exploring individual host factors, more studies should examine season 

and how it may play a role in the speed with which larvae reach L3 stage in culture. 

Conclusion: 

 More work is needed to test seasonality and age of the adult worm as factors 

influencing larval exsheathment in vitro and in vivo. This study has shown that these 

parameters have a negative impact on larval exsheathment during certain seasons and 

according to different worm ages in vitro and in vivo, and so it is important for future 

work to continue this line of research. The exact mechanism for how these factors act 

together in order to influence larval exsheathment should become a priority in future 

H. contortus research. Additionally, in order to effectively study the exsheathment 

stage of the H. contortus life cycle, in vitro and in vivo assays should yield results 

comparable to one another. Tailoring future work to involve direct comparison of 

different assays can further refine methodology for how the H. contortus life cycle is 

studied. Lastly, an improved understanding of how H. contortus larvae develops in 

culture can enhance future gastrointestinal nematode (GIN) control research efforts.  
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APPENDIX 1 

Standard Operating Procedure for Blood Collection 

Supplies:  

• [K2]EDTA (lavender top) blood collection tubes 

• 21g, 1.5” Vacutainer needles 

• Vacutainer holder  

• Cooler and tube rack 

 

Procedure: 

1. Properly restrain animal holding the head parallel to the ground and at a 30o 

angle to the side. 

2. Electric clippers may be used to prepare the neck by shaving off a patch of 

wool approximately 4 inches wide and 8 inches long. 

3. To hold off the vein, apply pressure with the thumb approximately half way 

down the side of the neck (on either side). The vein can be visualized and palpated 

once filled with blood. 

4. Secure a Vacutainer needle to the Vacutainer holder by twisting in. 

5. While holding off on the vein with one hand, insert the needle into the vein 

with the bevel facing upward.   

6. Once the needle is placed, push the EDTA tube into the holder and onto the 

needle.    



www.manaraa.com

 

106 

 

7. Gently adjust the needle until blood begins to flow into the tube. Blood flow 

will cease once the tube is full. 

8. Gently remove the tube and slowly invert eight times. 

9. Remove the needle and your hand from the neck and allow vein to relax.  

10. EDTA tubes should be immediately placed in ice.    

 

(Adapted protocol from the thesis of Caitlyn MacGlaflin; modified from Purdue 

University Blood Sampling in Sheep by Mitchell et al. (Retrieved on September 23, 

2008 from http://www.ces.purdue.edu/extmedia/AS/AS-557-W.pdf) 
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APPENDIX 2 

Standard Operating Procedure for Determining Packed Cell Volume 

Supplies:  

• Hematocrit capillary tubes 

• Capillary tube sealing wax 

• Kim wipes 

• PCV reader 

Procedure: 

1. Collect blood by jugular venipuncture into Vacutainer EDTA tubes, invert tube 

eight times, and place on ice. 

2. Invert tube to mix before use. 

3. Without spilling, tip tube so that blood moves toward the opening.  Place one 

end of the micro hematocrit capillary tube into the blood and allow tube to fill by 

capillary action.  Only fill tube up to ¾ of the way. 

4. Place fingertip at one end of the tube to prevent leaking.  Insert the other end of 

the tube into the sealing wax. Wipe off the tube with a kim wipe if there is any 

blood on the outside.  

5. Place capillary tubes into centrifuge rotor, making sure that the wax in the end 

of the tube faces outward (not towards the center of the centrifuge).  All samples 

should be run in duplicate and placed across from each other, keeping the 

centrifuge balanced. 

6. To prevent tubes from cracking, take a pin and gently push tubes against the 

outer edge of the rotor. 
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7. Centrifuge for 3 minutes at 15,000 RPM at room temperature. 

Sample Reading: 

1. Spin the PCV Reader until it reaches the 100 mark. 

2. Place the capillary tube into the sample groove. 

3. Align the wax/blood interface with the line at the bottom of the sample groove. 

4. Spin the top plate of the PCV reader until the “swirl” aligns with the plasma/air 

interface. 

5. Spin both plates until the “swirl” aligns with the white blood cell/red blood cell 

interface.  The value under the red line is the PCV to be read and reported as a 

percentage. 

(Adapted protocol from the thesis of Caitlyn MacGlaflin) 
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APPENDIX 3 

Packed Cell Volume Data for All Trial Cycles 
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APPENDIX 4 

Standard Operating Procedure for Fecal Egg Counts 

Supplies:  

• Small cups (2 for each sample) 

• Cheese cloth (double-ply, cut into 3”x3” squares) 

• Tongue depressors 

• Transfer pipets 

• McMaster slide(s) 

 

Procedure: 

1. Fecal samples are collected directly from the rectum and kept refrigerated until 

analysis. Samples should be run as promptly as possible, but within seven days 

from the time of collection. 

2. Two grams of feces are measured on a calibrated scale and placed into a l-2 

ounce cup.  

3. Add 28 ml Fecasol® to feces and soak for approximately 5  minutes.  

4. Gently break up fecal pellet with a tongue depressor. Set cup aside to sit for 

approximately 5 minutes. 

5. Pour fecal solution through a square of 2-ply cheesecloth into a new cup. Use 

tongue depressor to gently press fecal solution through gauze.   

6. Wet the McMaster slide with distilled water and gently pat dry top and bottom 

with paper towels. 
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7. Immediately pipet solution into both sides of the McMaster slide, using a 1 ml 

syringe, a sample of the suspension and fill one side of the chamber. 

8. Place slide on microscope platform and let sit, without disturbance, for 5 

minutes. 

9. Focus on the top layer using the low power (10x) objective.  Count all eggs 

inside of the grid areas (greater than ½ of egg inside grid). 

10. Count only trichostrongylid eggs (oval shaped, ~80-90 microns long) 

11. Total egg count: 

  (chamber 1 + chamber 2) * 50 = eggs per gram (epg) 

(Whitlock (1948), Modified McMaster Technique) 
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APPENDIX 5 

Fecal Egg Count Data for All Trial Cycles 
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APPENDIX 6 

Cleaning cannulated ewes and removing cannulas 

 

Supplies: 

• Stand 

• Halter 

• Water source (buckets of warm water during winter, hose during summer) 

• Blow drier or towels (cold weather only) 

• Gloves 

• Dawn soap 

• Electric clippers (when needed) 

• Bug repellent during fly season such as CLAC (Deo Lotion) 

Procedure: 

1. Halter ewe and put her on the stand. 

2. Put on gloves. 

3. Thoroughly soak the dirty area around the cannula (weather 

permitting). 

4. Lift the flap of the cannula and remove the caked-on rumen debris. 

5. Place soap on your hand and rub it into the wool to further loosen 

debris.  

6. When all of the rumen debris is loose, rinse off the soap. 

7. Wipe excess water off the ewe with gloved hand. 

8. During cold weather, dry with blow drier or towel.  
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9. If needed, clip the wool around and under the cannula flap. 

10. During fly season, spread repellent on the wool around and on the 

cannula 
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APPENDIX 7 

Standard Operating Procedure for Egg Recovery 

Supplies:  

• Small cup (4oz/120cc) 

• Nitrile gloves 

• 1mm, 355µm, 150µm, 38µm, and 25µm sieves 

• 15ml and 50ml Falcon™ tubes 

• Fecasol® 

• Glass cover slips 

• Transfer pipets 

• 20µL Micropipette with tips 

 

Procedure: 

1. Obtain 8-10 grams of feces from animal with more than 2,000 epg. 

2. Place feces in small cup (4oz/120cc). 

3. Activate hatchability. 

a. Add enough water to break up the feces.  

b. Mush with hands. End with slurry. 

c. Rinse hand. 

4. Rinse through 1mm sieve 

 . Place sieve over empty bucket (11 liter bucket).  

a. Pour mixture through sieve, rubbing with hand to increase speed.  

b. Rub and rinse through with tap water until clear.  
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c. Rinse sieve in sink.  

d. Run mixture through sieve again without rinsing, discard remaining debris. 

5. Repeat step 4 through the 355µm and150µm sieve. 

6. Rinse through the 38µm sieve but do not discard solids collected in sieve. This 

now contains eggs. Use water to rinse the solids off the sieve into an empty bucket.  

 . Collect the water that was rinsed through the 38µm sieve into four or 

more 50ml Falcon™ tubes to be used during the egg hatch assay.  

7. Repeat step 6 through the 25µm sieve. Use 50ml Fecasol® to rinse solids into 

a large glass beaker. 

8. Use transfer pipets to evenly distribute egg mixture into four 15ml Falcon™ 

tubes. Using Fecasol®, bring each volume to the top of the tube to form a positive 

meniscus. Carefully place a cover slip on the top of the tube and place in the 

centrifuge. 

9. Using the centrifuge, spin tubes at 200 x g for 2 minutes.   

10. Slowly remove cover slips by lifting straight up off the top of the tubes and 

rinse with water over the 25µm sieve. 

11. Wash off the 25µm sieve with 14mL of tap water into beaker. Pipette into 

15ml Falcon™ tube. 

12. Using the micropipette, measure out 10µL and put on a slide. Determine the 

concentration of eggs in the 14mL of water and calculate a total number of eggs.  

1. Obtain 5 or more egg counts of 10µL pulls and calculate an average. 

The Falcon™ tube should be inverted 5-8 times prior to obtaining each 

pull.  
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 Ex: if there are an average of 69 eggs in 10µL 

 69 eggs10µL=x14,000µL→10x=966,000→x=96,600 eggs [in 14mL] 

 

(Adapted protocol from Miller parasitology laboratory, unpublished methods) 
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APPENDIX 8 

Standard Operating Procedure for Egg Hatch and L1 Mortality Assay 

(Adapted protocol from Assis et al. (2003) and Marie-Magdeleine et al. (2009); in 

vitro methods) 

Procedure: 

1. Weigh out desired amount of either PAC or plant material.  Create stock 

solution using tap water, determining the stock solution concentration to be 

double of the highest concentration in the wells.  Prepare serial dilutions of 

extracts using tap water.  

2. Make control solution using Thiabendazole (TBZ, Thermo Fisher 

Scientific Inc., Waltham, MA, USA) in dimethyl sulfoxide (DMSO, Fisher 

BioReagents™, Thermo Fisher Scientific Inc., Waltham, MA, USA; REF 

#BP231-1) at a concentration of 1 mg TBZ/mL DMSO (1.4 mg TBZ 

dissolved in 1400 μL DMSO). 

3. Obtain a concentration of eggs from recovery.  Correct concentration of 

egg solution to be approximately 100 eggs in 100 μl. 

4. Add 100 eggs (in 100 μl) per well into a 24-well plate (Corning™, 

Falcon™, Polystyrene Microplates, Corning Life Sciences, Tewksbury, 

MA, USA; REF #353226). 

5. Designate negative controls by only adding tap water to wells.  Add 10μl 

of the TBZ stock solution to each positive control well (in a total volume of 

2 mL this will give a final concentration of 0.5 μg/mL of TBZ).  

6. For wells that did not get 10 μl of TBZ solution, add 10 μl of DMSO. 
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7. All wells receive 890 μl tap water increasing the volume to 1 mL.  

8. Add either prepared PAC extract solutions (1 ml) or add 1 ml water to 

negative or positive control wells, increasing to total volume of 2 mL. 

9. Incubate for 24 hours at 26oC. 

10. Count number of eggs and live larvae in each well (based on 5 second 

observation of motility) at 24 hours. 
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APPENDIX 9 

Egg Hatch Data for All Trial Cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assay Date Seasonal Cycle Age of Infection (Months) Donor (Replicate) Egg Hatchability (%) Notes

10/24/2017 1 1 1704 96

1 1 1705 97.78

11/20/2017 1 2 1704 98.2

1 2 1705 97.5

12/11/2017 1 3 1704 99.01

1 3 1705 98.49

1/15/2018 1 4 1704 N/A Note 1

1 4 1705 95.82

1/23/2018 2 1 1706 97

2 1 1707 97.5

2/20/2018 2 2 1706 98

2 2 1707 95.53

3/20/2018 2 3 1706 98.07

2 3 1707 97.5

4/17/2018 2 4 1706 98.43

2 4 1707 98.63

4/24/2018 3 1 H1820 96.57

3 1 H1821 95.88

5/21/2018 3 2 H1820 92.93

3 2 H1821 94.82

6/19/2018 3 3 H1820 96.6

3 3 H1821 96.06

7/19/2018 3 4 H1820 96.9

3 4 H1821 96.46

8/14/2018 3 5 H1820 98.31

3 5 H1821 96.96

9/10/2018 3 6 H1820 96.82

3 6 H1821 96.56

7/24/2018 4 1 H1824 96.11

4 1 H1829 95.89

8/20/2018 4 2 H1824 97.03

4 2 H1829 97.66

9/18/2018 4 3 H1824 86.18

4 3 H1829 95.3

10/16/2018 4 4 H1824 90.95

4 4 H1829 96.14

11/14/2018 4 5 H1824 94.78

4 5 H1829 98.01

10/23/2018 5 1 1829 96.27

5 1 1833 92.23

11/19/2018 5 2 1829 96.19

5 2 1833 95.14

12/10/2018 5 3 1829 97.16

5 3 1833 98.17

1/14/2018 5 4 1829 97.96

5 4 1833 97.91

2/12/2019 5 5 1829 97.72

5 5 1833 98.04

3/12/2019 5 6 1829 N/A Note 1

5 6 1833 96.05

Note 1

Notes

FEC for one donor was too low to perform egg recovery
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APPENDIX 10 

Standard Operating Procedure for L3 Mortality and Exsheathment Inhibition 

Assay 

(Adapted protocol from Conder and Johnson (1996), in vitro methods) 

Procedure: 

1. Obtain L3 infective larvae, less than 3 months old 

2. Sheathed L3 larvae (2,000) are added to Earle’s Balanced Salt Solution 

(EBSS, Sigma-Aldrich®, Inc., Natick, MA, USA; REF #E3024) up to a 

volume of 1 mL in a 15 mL Falcon™ tube.  

3. Tap water (1 mL) will be added to water control larvae, for a total volume 

of 2 mL in the Falcon™ tube. Larvae will be checked for viability 

4. Parafilm M® (Bemis Company, Inc., Neenah, WI; REF #HS234526A-1) is 

used to stretch over the top of the tubes as a cover.  A glass pipet tip, 

connected to a CO2 tank, is carefully placed down into the larval solution 

by puncturing through the Parafilm M®.  Making sure the Parafilm M® is 

still stretched.  

5. CO2 is then bubbled into tubes for 15 minutes immediately prior to the 

incubation period.  

6. Caps are screwed on each tube for incubation after removing the CO2 

feeder tube.   

7. Tubes are then placed back into the incubator at 38oC for 18-24 hours. 
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8. Following the 18-hour incubation, percent exsheathment and percent 

viability are determined by averaging counts of exsheathed larvae from the 

first 100 motile worms observed. 
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APPENDIX 11 

In vitro Exsheathment and Viability Data for All Trial Cycles 
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[Continued] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
ss

ay
 D

at
e

Se
as

o
n

al
 C

yc
le

A
ge

 o
f 

In
fe

ct
io

n
 (

m
o

n
th

s)
D

o
n

o
r

R
e

p
lic

at
e

V
ia

b
ili

ty
A

d
ju

st
e

d
 V

ia
b

ili
ty

Ex
sh

e
at

h
m

e
n

t
A

d
ju

st
e

d
 E

xs
h

e
at

h
m

e
n

t
N

o
te

s

1
/2

9
/2

0
1

8
2

1
1

7
0

7
N

o
 C

O
2

9
0

3
.7

2
1

1
7

0
7

C
O

2
 A

8
8

9
7

.3
5

5
.5

5
3

.7

2
1

1
7

0
7

C
O

2
 B

8
3

9
1

.7
5

7
.7

5
6

.0

2
1

1
7

0
7

C
O

2
 C

8
6

9
4

.8
5

5
.8

5
4

.0

2
1

1
7

0
6

N
o

 C
O

2
8

7
6

.3

2
1

1
7

0
6

C
O

2
 A

6
2

7
1

.8
7

4
.0

7
2

.3

2
1

1
7

0
6

C
O

2
 B

7
6

8
8

.1
7

4
.8

7
3

.1

2
1

1
7

0
6

C
O

2
 C

7
8

8
9

.8
6

8
.6

6
6

.5

2
/2

6
/2

0
1

8
2

2
1

7
0

7
N

o
 C

O
2

9
0

2
2

.1

2
2

1
7

0
7

C
O

2
 A

9
8

1
0

0
.0

7
3

.8
6

6
.4

2
2

1
7

0
7

C
O

2
 B

9
8

1
0

0
.0

7
7

.6
7

1
.2

2
2

1
7

0
7

C
O

2
 C

9
8

1
0

0
.0

7
9

.4
7

3
.5

2
2

1
7

0
6

N
o

 C
O

2
9

8
1

6
.4

2
2

1
7

0
6

C
O

2
 A

9
4

9
5

.2
7

5
.0

7
0

.1

2
2

1
7

0
6

C
O

2
 B

9
5

9
6

.3
6

6
.4

5
9

.8

2
2

1
7

0
6

C
O

2
 C

8
6

8
7

.7
6

4
.2

5
7

.1

3
/2

7
/2

0
1

8
2

3
1

7
0

7
N

o
 C

O
2

9
7

2
.9

N
o

te
 2

2
3

1
7

0
7

C
O

2
 A

1
0

0
1

0
0

.0
7

3
.3

7
2

.5

2
3

1
7

0
7

C
O

2
 B

9
5

9
7

.5
7

4
.3

7
3

.5

2
3

1
7

0
7

C
O

2
 C

9
7

9
9

.5
6

2
.2

6
1

.1

4
/2

4
/2

0
1

8
2

4
1

7
0

7
N

o
 C

O
2

9
5

0
.8

2
4

1
7

0
7

C
O

2
 A

9
7

1
0

0
.0

6
5

.3
6

5
.0

2
4

1
7

0
7

C
O

2
 B

9
8

1
0

0
.0

5
6

.9
5

6
.5

2
4

1
7

0
7

C
O

2
 C

9
4

9
8

.4
7

5
.7

7
5

.5

2
4

1
7

0
6

N
o

 C
O

2
9

8
0

.9

2
4

1
7

0
6

C
O

2
 A

9
7

9
8

.3
6

2
.2

6
1

.9

2
4

1
7

0
6

C
O

2
 B

9
8

1
0

0
.0

5
9

.5
5

9
.1

2
4

1
7

0
6

C
O

2
 C

9
6

9
7

.8
5

7
.1

5
6

.7

5
/2

1
/2

0
1

8
2

5
1

7
0

7
N

o
 C

O
2

9
0

5
.9

2
5

1
7

0
7

C
O

2
 A

9
7

1
0

0
.0

7
3

.9
7

2
.2

2
5

1
7

0
7

C
O

2
 B

9
3

1
0

0
.0

6
1

.0
5

8
.6

2
5

1
7

0
7

C
O

2
 C

9
1

1
0

0
.0

7
5

.8
7

4
.3

2
5

1
7

0
6

N
o

 C
O

2
9

5
0

.9

2
5

1
7

0
6

C
O

2
 A

9
3

9
7

.7
8

5
.6

8
5

.5

2
5

1
7

0
6

C
O

2
 B

9
8

1
0

0
.0

5
2

.2
5

1
.8

2
5

1
7

0
6

C
O

2
 C

9
5

1
0

0
.0

6
4

.0
6

3
.7



www.manaraa.com

 

125 

 

[Continued] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
ss

ay
 D

at
e

Se
as

o
n

al
 C

yc
le

A
ge

 o
f 

In
fe

ct
io

n
 (

m
o

n
th

s)
D

o
n

o
r

R
ep

lic
at

e
V

ia
b

ili
ty

A
d

ju
st

ed
 V

ia
b

ili
ty

Ex
sh

ea
th

m
en

t
A

d
ju

st
ed

 E
xs

h
ea

th
m

en
t

N
o

te
s

5/
9/

20
18

3
1

H
18

20
N

o
 C

O
2

92
0.

9

3
1

H
18

20
C

O
2 

A
86

94
.1

67
.7

67
.4

3
1

H
18

20
C

O
2 

B
95

10
0.

0
65

.4
65

.1

3
1

H
18

20
C

O
2 

C
89

97
.4

78
.3

78
.1

3
1

H
18

21
N

o
 C

O
2

86
0.

0

3
1

H
18

21
C

O
2 

A
92

10
0.

0
60

.3
60

.3

3
1

H
18

21
C

O
2 

B
80

93
.0

68
.0

68
.0

3
1

H
18

21
C

O
2 

C
73

84
.2

66
.9

66
.9

5/
29

/2
01

8
3

2
H

18
20

N
o

 C
O

2
89

7.
4

N
o

te
 2

3
2

H
18

20
C

O
2 

A
94

10
0.

0
81

.6
80

.1

3
2

H
18

20
C

O
2 

B
96

10
0.

0
66

.0
63

.3

3
2

H
18

20
C

O
2 

C
92

10
0.

0
61

.9
58

.9

7/
3/

20
18

3
3

H
18

20
N

o
 C

O
2

98
0.

9
N

o
te

 2

3
3

H
18

20
C

O
2 

A
97

98
.9

68
.9

68
.6

3
3

H
18

20
C

O
2 

B
99

10
0.

0
61

.5
61

.1

3
3

H
18

20
C

O
2 

C
97

99
.0

69
.9

69
.6

7/
31

/2
01

8
3

4
H

18
20

N
o

 C
O

2
96

2.
5

3
4

H
18

20
C

O
2 

A
98

10
0.

0
61

.8
60

.8

3
4

H
18

20
C

O
2 

B
97

10
0.

0
66

.7
65

.8

3
4

H
18

20
C

O
2 

C
97

10
0.

0
58

.1
57

.0

3
4

H
18

21
N

o
 C

O
2

99
4.

6

3
4

H
18

21
C

O
2 

A
97

97
.4

54
.7

52
.5

3
4

H
18

21
C

O
2 

B
98

98
.7

62
.4

60
.6

3
4

H
18

21
C

O
2 

C
97

97
.9

52
.9

50
.7

8/
29

/2
01

8
3

5
H

18
20

N
o

 C
O

2
99

0.
0

3
5

H
18

20
C

O
2 

A
98

98
.9

53
.3

53
.3

3
5

H
18

20
C

O
2 

B
98

99
.3

55
.4

55
.4

3
5

H
18

20
C

O
2 

C
98

99
.0

53
.6

53
.6

3
5

H
18

21
N

o
 C

O
2

96
0.

0

3
5

H
18

21
C

O
2 

A
99

10
0.

0
79

.4
79

.4

3
5

H
18

21
C

O
2 

B
99

10
0.

0
74

.3
74

.3

3
5

H
18

21
C

O
2 

C
97

10
0.

0
59

.1
59

.1

9/
25

/2
01

8
3

6
H

18
20

N
o

 C
O

2
10

0
0.

0

3
6

H
18

20
C

O
2 

A
99

99
.0

55
.3

55
.3

3
6

H
18

20
C

O
2 

B
10

0
10

0.
0

52
.0

52
.0

3
6

H
18

20
C

O
2 

C
98

97
.8

40
.7

40
.7

3
6

H
18

21
N

o
 C

O
2

99
0.

0

3
6

H
18

21
C

O
2 

A
98

99
.1

55
.1

55
.1

3
6

H
18

21
C

O
2 

B
10

0
10

0.
0

46
.1

46
.1

3
6

H
18

21
C

O
2 

C
99

10
0.

0
55

.9
55

.9



www.manaraa.com

 

126 

 

[Continued] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
ss

ay
 D

at
e

Se
as

o
n

al
 C

yc
le

A
ge

 o
f 

In
fe

ct
io

n
 (

m
o

n
th

s)
D

o
n

o
r

R
ep

lic
at

e
V

ia
b

ili
ty

A
d

ju
st

ed
 V

ia
b

ili
ty

Ex
sh

ea
th

m
en

t
A

d
ju

st
ed

 E
xs

h
ea

th
m

en
t

N
o

te
s

8/
8/

20
18

4
1

H
18

24
N

o
 C

O
2

74
0.

0

4
1

H
18

24
C

O
2 

A
80

10
0.

0
73

.5
73

.5

4
1

H
18

24
C

O
2 

B
86

10
0.

0
80

.5
80

.5

4
1

H
18

24
C

O
2 

C
89

10
0.

0
68

.8
68

.8

4
1

H
18

29
N

o
 C

O
2

92
1.

9

4
1

H
18

29
C

O
2 

A
94

10
0.

0
86

.8
86

.5

4
1

H
18

29
C

O
2 

B
98

10
0.

0
84

.3
84

.0

4
1

H
18

29
C

O
2 

C
93

10
0.

0
91

.4
91

.2

9/
5/

20
18

4
2

H
18

24
N

o
 C

O
2

99
0.

9

4
2

H
18

24
C

O
2 

A
97

98
.0

76
.0

75
.8

4
2

H
18

24
C

O
2 

B
10

0
10

0.
0

52
.9

52
.5

4
2

H
18

24
C

O
2 

C
99

10
0.

0
45

.1
44

.6

4
2

H
18

29
N

o
 C

O
2

10
0

0.
0

4
2

H
18

29
C

O
2 

A
96

96
.4

50
.0

50
.0

4
2

H
18

29
C

O
2 

B
99

99
.2

46
.0

46
.0

4
2

H
18

29
C

O
2 

C
98

97
.6

38
.7

38
.7

10
/3

/2
01

8
4

3
H

18
24

N
o

 C
O

2
95

0.
0

4
3

H
18

24
C

O
2 

A
95

10
0.

0
21

.7
21

.7

4
3

H
18

24
C

O
2 

B
96

10
0.

0
18

.1
18

.1

4
3

H
18

24
C

O
2 

C
93

98
.6

32
.9

32
.9

4
3

H
18

29
N

o
 C

O
2

97
0.

0

4
3

H
18

29
C

O
2 

A
99

10
0.

0
20

.3
20

.3

4
3

H
18

29
C

O
2 

B
96

99
.3

23
.1

23
.1

4
3

H
18

29
C

O
2 

C
97

10
0.

0
26

.3
26

.3

10
/3

0/
20

18
4

4
H

18
24

N
o

 C
O

2
10

0
0.

0

4
4

H
18

24
C

O
2 

A
10

0
10

0.
0

19
.4

19
.4

4
4

H
18

24
C

O
2 

B
99

99
.2

9.
8

9.
8

4
4

H
18

24
C

O
2 

C
10

0
10

0.
0

15
.8

15
.8

4
4

H
18

29
N

o
 C

O
2

99
0.

0

4
4

H
18

29
C

O
2 

A
10

0
10

0.
0

15
.5

15
.5

4
4

H
18

29
C

O
2 

B
10

0
10

0.
0

10
.8

10
.8

4
4

H
18

29
C

O
2 

C
10

0
10

0.
0

16
.9

16
.9

11
/2

7/
20

18
4

5
H

18
24

N
o

 C
O

2
98

0.
0

4
5

H
18

24
C

O
2 

A
97

98
.8

20
.6

20
.6

4
5

H
18

24
C

O
2 

B
10

0
10

0.
0

10
.9

10
.9

4
5

H
18

24
C

O
2 

C
98

99
.7

16
.7

16
.7

4
5

H
18

29
N

o
 C

O
2

97
0.

0

4
5

H
18

29
C

O
2 

A
98

10
0.

0
15

.9
15

.9

4
5

H
18

29
C

O
2 

B
99

10
0.

0
17

.1
17

.1

4
5

H
18

29
C

O
2 

C
96

99
.0

21
.1

21
.1



www.manaraa.com

 

127 

 

[Continued] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
ss

ay
 D

at
e

Se
as

o
n

al
 C

yc
le

A
ge

 o
f 

In
fe

ct
io

n
 (

m
o

n
th

s)
D

o
n

o
r

R
ep

lic
at

e
V

ia
b

ili
ty

A
d

ju
st

ed
 V

ia
b

ili
ty

Ex
sh

ea
th

m
en

t
A

d
ju

st
ed

 E
xs

h
ea

th
m

en
t

N
o

te
s

11
/7

/2
01

8
5

1
18

33
N

o
 C

O
2

97
0.

0

5
1

18
33

C
O

2 
A

99
10

0.
0

17
.9

17
.9

5
1

18
33

C
O

2 
B

99
10

0.
0

17
.2

17
.2

5
1

18
33

C
O

2 
C

98
10

0.
0

15
.1

15
.1

5
1

18
29

N
o

 C
O

2
97

0.
9

5
1

18
29

C
O

2 
A

96
98

.7
29

.3
28

.6

5
1

18
29

C
O

2 
B

99
10

0.
0

23
.9

23
.2

5
1

18
29

C
O

2 
C

98
10

0.
0

22
.4

21
.7

12
/5

/2
01

8
5

2
18

33
N

o
 C

O
2

93
0.

0

5
2

18
33

C
O

2 
A

89
95

.8
29

.4
29

.4

5
2

18
33

C
O

2 
B

91
97

.7
22

.1
22

.1

5
2

18
33

C
O

2 
C

92
98

.8
22

.0
22

.0

5
2

18
29

N
o

 C
O

2
77

0.
0

5
2

18
29

C
O

2 
A

84
10

0.
0

42
.1

42
.1

5
2

18
29

C
O

2 
B

94
10

0.
0

33
.6

33
.6

5
2

18
29

C
O

2 
C

93
10

0.
0

38
.0

38
.0

1/
1/

20
19

5
3

18
33

N
o

 C
O

2
10

0
0.

0

5
3

18
33

C
O

2 
A

10
0

10
0.

0
88

.2
88

.2

5
3

18
33

C
O

2 
B

10
0

10
0.

0
74

.8
74

.8

5
3

18
33

C
O

2 
C

10
0

10
0.

0
69

.0
69

.0

5
3

18
29

N
o

 C
O

2
99

0.
0

5
3

18
29

C
O

2 
A

99
10

0.
0

73
.1

73
.1

5
3

18
29

C
O

2 
B

10
0

10
0.

0
79

.7
79

.7

5
3

18
29

C
O

2 
C

10
0

10
0.

0
77

.3
77

.3

1/
30

/2
01

9
5

4
18

33
N

o
 C

O
2

96
0.

0

5
4

18
33

C
O

2 
A

97
10

0.
0

45
.8

45
.8

5
4

18
33

C
O

2 
B

98
10

0.
0

66
.1

66
.1

5
4

18
33

C
O

2 
C

10
0

10
0.

0
59

.1
59

.1

5
4

18
29

N
o

 C
O

2
10

0
0.

0

5
4

18
29

C
O

2 
A

99
99

.1
67

.9
67

.9

5
4

18
29

C
O

2 
B

97
97

.3
63

.9
63

.9

5
4

18
29

C
O

2 
C

98
98

.3
58

.4
58

.4

2/
27

/2
01

9
5

5
18

33
N

o
 C

O
2

10
0

1.
0

5
5

18
33

C
O

2 
A

10
0

10
0.

0
97

.1
97

.1

5
5

18
33

C
O

2 
B

10
0

10
0.

0
98

.1
98

.1

5
5

18
33

C
O

2 
C

10
0

10
0.

0
96

.2
96

.1

5
5

18
29

N
o

 C
O

2
10

0
0.

0

5
5

18
29

C
O

2 
A

98
98

.2
95

.4
95

.4

5
5

18
29

C
O

2 
B

99
99

.1
95

.3
95

.3

5
5

18
29

C
O

2 
C

10
0

10
0.

0
98

.3
98

.3

3/
27

/2
01

9
5

6
18

33
N

o
 C

O
2

10
0

0.
0

N
o

te
 3

5
6

18
33

C
O

2 
A

10
0

10
0.

0
57

.0
57

.0

5
6

18
33

C
O

2 
B

10
0

10
0.

0
39

.6
39

.6

5
6

18
33

C
O

2 
C

10
0

10
0.

0
37

.4
37

.4

N
o

te
 1

N
o

te
 2

N
o

te
 3

N
o

te
s

La
rv

a
e 

re
co

ve
ry

 f
o

r 
o

n
e 

d
o

n
o

r 
fa

ile
d

 (
<9

5%
 L

3 
co

m
in

g 
o

u
t 

o
f 

cu
lt

u
re

)

La
rv

a
e 

re
co

ve
ry

 f
o

r 
o

n
e 

d
o

n
o

r 
fa

ile
d

 (
d

u
e 

to
 lo

w
 F

EC
)

La
rv

a
e 

re
co

ve
ry

 f
o

r 
o

n
e 

d
o

n
o

r 
fa

ile
d

 (
d

u
e 

to
 lo

w
 v

ia
b

ili
ty

 c
o

m
in

g 
o

u
t 

o
f 

cu
lt

u
re

)



www.manaraa.com

 

128 

 

APPENDIX 12  

Graph of In vitro Exsheathment Assay Viability Results 
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APPENDIX 13  

Graph of In vitro Exsheathment Assay Exsheathment Results 
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APPENDIX 14 

In vivo Exsheathment Inhibition and L3 Mortality Assay 

 

Supplies: 

• 20,000 H. contortus larvae 

• Microscope 

• Slides 

• 20 µL pipette and tips 

• 1000 µL pipette and tips 

• Eight 3.8 cm pieces of Tygon® tubing; ID: 9.5 mm OD: 14.3 mm (Fisher 

Scientific, Hampton, NH). 

• 16 NuncTM Cell Culture Inserts (i.e. NuncTM top) 

• 4 Cannula plugs with two 20 cm cords attached to the inner side of each 

• 16 small zip ties 

• 3 mL syringe and 25 G needle 

• Thermometer 

• 3 large buckets 

• 8 labeled 2mL capsules 

• Paper towels 

• 8 5x10 cm heat sealed concentrate bags (R510, ANKOM Technology, 

Macedon, NY) 

• Impulse heat sealer 

• Shoulder length gloves 

https://www.google.com/search?rlz=1C1CHFX_enUS571US571&espv=2&biw=1366&bih=638&q=Town+of+Hampton+New+Hampshire&stick=H4sIAAAAAAAAAOPgE-LUz9U3MI03N85SAjMNcy3TirS0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQAnixfXRAAAAA&sa=X&sqi=2&ved=0ahUKEwjKx6GJu8jSAhWJiVQKHZf4A80QmxMIggEoATAS
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• Gloves 

• 4 rumen fistulated ewes 

• 4 halters 

• Movable panel 

• Thermo water heater 

• Small scissors  

• Small labeled cups (labeled with ear tag numbers) 

• Tube rocker 

Procedure: 

Day before Experiment: 

1. Set larvae out at room temperature 20-24 hours before start of experiment. 

2. Read approximate concentration of motile ensheathed larvae (MEnL).  

• Determine # MEnL per 1µL (divide average MEnL by 10). 

• Determine # µL necessary to = 2000 larvae (divide 2000 by #MEnL per 

1 µL).  

Day of Experiment: 

3. Fill one bucket with very warm tap water. 

4. Insert one NuncTM top into one end of each Tygon® tube. Top should be at 

least 3/4ths covered by tubing. 

5. Place all tubes into the bucket filled with very warm tap water to soften tubes. 

6. Fill other another bucket with 37ºC tap water (use thermometer). 

7. Remove first tube from very warm tap water. 
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8. Using 1000 µL pipette to pipette the number of µLs necessary to equal 2000 

larvae (determined previous day) into softened tube.  

9. Pipette 37ºC water into softened tube until approximately 2/3rds full. 

10. Carefully insert second NuncTM top into open end of tube. 

11. Place in 37ºC water after seal is made and push NuncTM top into tube so that 

3/4ths is covered by the tubing. 

12. Using the syringe and needle, insert the needle into the capsule near the middle 

of the capsule, but at a nearly parallel angle so that the needle enters the inner part of 

the tube near one of the NuncTM tops.  

13. Submerge at least one end of the capsule underwater in the 37ºC water and 

draw back on the syringe to remove the air pocket. The goal is to make the air pocket 

as small as possible without removing any liquid containing the larvae. 

14. Leave the completed capsule in the water and repeat steps 7-13 until all eight 

capsules are completed.  

15. Fill another large bucket half way with 37ºC water. 

16. Remove a capsule from the water and dry the outsides using paper towels.  

17. Place in one heat seal-able bag and seal end using impulse sealer. 

18. Using two zip ties, attach the capsule to one end of a cannula plug string. 

• Wrap one zip tie around the tube and bag and through the loop on the 

cannula plug string; tighten the zip tie to a snug position. 

• Repeat with the second zip tie. 

19. Repeat steps 16-18 until all capsules are attached. When a cannula plug has 

both capsules attached, submerge in the fresh bucket of 37ºC water. 
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20. Bring down to fistulated ewes: bucket with cannulas and capsules, shoulder 

length gloves, and regular gloves. 

21. Use movable panel and halters to catch and secure the four fistulated sheep. 

22. Remove cannula plug from sheep with lowest ear-tag number and insert 

capsules. 

• Using arm with shoulder length glove, cup capsules in hand and insert 

as deep as possible into rumen.  

• Orient strings to be at the bottom of the U-bolt they are tied to. 

• Insert cannula plug and orient so that the outer U- bolt is parallel to the 

ground (this makes the inner U-bolt perpendicular to the ground). 

23. Repeat for the rest of the fistulated sheep in the order of increasing ear-tag 

numbers (ex: 1206, 1301, 1308, 1314). 

24. Note time of first inserted capsule (Generally 7-8am). 

25. Release the ewes and give them their morning feeding. 

26. Rinse regular cannula plugs and place somewhere where their smell won't 

bother others. 

27. Read remaining larvae used for set-up to determine pre-experiment motility 

and exsheathment percentages.  

• Look at a minimum of 150 motile larvae. 

• Be sure to record the age of the larvae and other flask information. 

28. Clean-up from set-up.  

29. Get together afternoon supplies 
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• Fill empty bucket with: more shoulder length gloves, extra regular 

gloves, 4 halters, small scissors, and labeled cups. 

• label the eight 2mL capsules with ear tag numbers (two for each sheep). 

30. Wait determined amount of time (8 hours) and remove capsules (3-4pm 

depending on start time). 

31. Approximately 30 minutes before removing capsules: 

• Turn on the Thermo water heater to 37ºC (confirm temp with 

thermometer). 

• Fill bucket with 37ºC tap water.  

32. Bring supplies in bucket from step 29 and the bucket with water to sheep. 

33. Dump half the 37ºC water in with the cannula plugs that were removed that 

morning to soften the plugs. 

34. Dump half the remaining water into the labeled cups. 

35. Catch the sheep with the movable panel and tie them using the halters. 

36. Remove capsules starting with sheep with lowest ear-tag number. 

• When removing capsules avoid pulling out by the strings. Instead reach 

into rumen with gloved hand, cup capsules, and remove gently. 

37. Replace cannula plug with plain plugs from the morning. 

38. Cut and discard both zip ties and cut heat sealed bag off of larvae capsule. 

39. Rinse capsule in remaining water and place in appropriately labeled cup. 

40. Repeat steps 36-40 for all four sheep. 

41. Release sheep and clean the dirty cannula plugs and attached strings. 
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42. Discard rumen-fluid-covered gloves/heatsealed bags/etc in dumpster to avoid 

attracting flies. 

43. Using small scissors, cut several indents in one end of the capsule's tube. 

44. Remove NuncTM top and pour larvae containing fluid into appropriately 

labeled 2mL capsule.  

45. Place capsule into 37ºC water in water heater. 

46. Repeat steps 43-46 for all capsules. 

47. Place each 2mL capsule on tube rocker when ready to read 

48. Read larvae: 

• Using 20uL pipette read 10uL drops of larvae at a time 

• Keep track of exsheathed motile/non-motile and ensheathed 

motile/non-motile 

• Read until 150 motile larvae or 200 total larvae (whichever comes 

first). 

• Calculate % Motility (viability) and % Exsheathment 

• % Motile (viable) = Total motile/Total 

• For exsheathment calculations only motile larvae are included.  

% Exsheathment = (# Motile Exsheathed/#Total Motile) x 100%  
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APPENDIX 15 

In vivo Exsheathment and Viability Data for All Trial Cycles 
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[Continued] 
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APPENDIX 16  

Graph of In vivo Exsheathment Assay Viability Results 
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APPENDIX 17  

Graph of In vivo Exsheathment Assay Exsheathment Results 
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APPENDIX 18 

Procedure for pH Calibration/Measurement 

Supplies: 

• shoulder length gloves 

• gloves 

• pH 7 and 4 buffers 

• small cups 

• Accumet portable pH meter and electrode (AP115, Fisher Scientific, Hampton, 

NH) 

• large beaker of water 

• four small glass beakers 

• large syringe with a long piece of Tygon® tubing attached 

• record sheet and pen 

• distilled water 

• halters 

Procedure: 

1. Attach the electrode to the pH meter (meter should be protected by a gallon zip 

lock bag). 

2. Turn pH meter on by pressing "on" button. 

3. With gloves on, remove storage bulb from end of electrode and place the bulb 

into a cup. 

4. Pour approximately 3/4in of each buffer into separate cups. 

5. Rinse probe off with distilled water 
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6. Press standardize button, and when standardize is flashing on screen, insert 

into pH 7 buffer. 

7. When the pH is stable for 30 seconds, press the standardize button again. 

8. Repeat steps 5-7 for pH 4 buffer. 

9. Rinse probe and place it in the large beaker of water. 

10. Halter and tie sheep to pens. 

11. Remove rumen cannula plug and insert the free end of the Tygon® tubing deep 

into the center of the rumen. 

12. Draw back on the syringe to pull rumen fluid into the tubing. 

13. Cover the end of the tubing with a finger and remove it from the rumen. 

14. Place the end of the tube into one of the clean beakers and release the rumen 

fluid into the beaker. 

15. Take a second sample of rumen fluid from the same ewe and add it to the 

beaker. 

16. Rinse the electrode off with distilled water and place it in the beaker with 

rumen fluid. 

17. Thoroughly rinse the syringe and tubing with water. 

18. Record the pH of the rumen fluid. 

19. Repeat steps 11-18 on the other ewes. 

20. Release ewes and clean up any mess. 

21. Rinse the electrode, and with gloves on, reinsert probe into the storage bulb. 

22. Dispose of pH buffer into waste containers. 
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APPENDIX 19 

Fistulated Ewe pH Data for All Cycles 

Date 1206 1301 1308 1314 Mean Notes

pH pH pH pH

10/31/2017 6.54 6.65 6.49 6.24 6.48

11/28/2017 6.12 6.05 6.22 5.89 6.07

12/19/2017 6.14 6.27 6.26 5.95 6.16

1/23/2018 6.25 6.18 6.25 6.22 6.23

1/30/2018 6.18 6.22 6.57 5.95 6.23

2/27/2018 6.12 5.97 6.07 5.61 5.94

3/27/2018 6.17 6.2 5.97 5.99 6.08

4/24/2018 NS NS NS NS N/A Note 1

5/1/2018 6.83 6.85 6.47 6.53 6.67

5/22/2018 6.97 6.74 6.96 6.7 6.84

5/29/2018 6.83 6.54 6.13 6.44 6.49

7/4/2018 6.72 6.41 6.22 6.18 6.38

7/31/2018 6.43 NS 6.42 6.17 6.34 Note 2

8/7/2018 6.45 6.44 5.92 6.11 6.23

8/29/2018 6.8 6.56 6.39 6.28 6.51

9/5/2018 6.61 6.32 6.31 6.54 6.45

9/26/2018 6.35 6.36 6.5 6.56 6.44

10/3/2018 6.24 6.15 6.2 6.31 6.23

10/30/2018 6.89 6.75 6.81 6.66 6.78

11/7/2018 6.64 6.41 6.34 6.36 6.44

11/28/2018 6.71 5.85 6.53 5.57 6.17

12/5/2018 6.48 6.62 6.68 6.25 6.51

1/2/2019 7.16 7.28 7.22 7.21 7.22 Note 3

1/30/2019 7.01 6.9 6.81 6.83 6.89

2/27/2019 6.35 6.55 6.58 6.15 6.41

Note 1

Note 2

Note 3 Change in ewes diet to feeding 1x/day instead of 2x/day (for duration of the trial)

Fistulated Ewe Identification Number

                                                                         Notes

pH meter broken--> no pH measurements taken (NS= no sample)

One ewe had rumen fluid issue (NS= no sample)
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APPENDIX 20 

Infection Parameters for All Cycles 
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APPENDIX 21 

Trial Donor Animal Identification Chart 
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APPENDIX 22 

Weather Data 

 

 

 Average daily temperature, precipitation and humidity throughout the five seasonal 

cycles.  Vertical lines designate the start of each seasonal cycle. The length of each 

cycle, dictated by the persistence of the donor infection, varied from 4-6 months in 

length, causing sampling within each cycle to extend into the next season. Weather 

data was collected from an online quality-controlled weather station data set sponsored 

by NOAA (Weather station title: ‘RI Kingston 1 W’) (Lawrimore et al., 2011). 

(https://www.ncdc.noaa.gov/crn/qcdatasets.html). 
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[Continued] 

 

 

Weather Data Description: 

 

Daily average temperature, precipitation and humidity data was collected using a 

NOAA data set gathered from a weather station in Kingston, RI (‘Kingston RI 1 W’) 

(Lawrimore et al., 2011). Average daily temperature, precipitation and humidity for 

each seasonal cycle are depicted in Figure 1. For cycles Fall 1, Winter, Spring, 

Summer and Fall 2, average cycle temperature was 5.5 ± 0.8°C,  3.6 ± 0.6°C, 16.5 ± 

0.5°C, 16.6 ± 0°C, 3.6 ± 0.5°C; average cycle precipitation was 4.2 ± 0.9 mm, 4.3 ± 

0.8 mm, 2.9 ± 0.5 mm, 4.9 ± 0.9 mm, 5.5 ± 0.9 mm and average cycle humidity was 

73.2 ± 1.2%, 69.7 ± 1.2%, 77.3 ± 0.8%, 79.5 ± 0.8%, 70.1 ± 1.1%, respectively. While 

average cycle temperature and humidity were both higher for Fall 1 when compared to 

Fall 2, average cycle precipitation was lower. Weather data was not included in the 

manuscript of the thesis due to the location of the weather station in relation to the 

location of the animals used in the study. The weather station is located in a hay field 

at the University of Rhode Island’s Peckham farm and the animals on trial were 

housed in an indoor space with minimal insulation. Animals were exposed to altered 

environmental temperatures due to lack of insulation, but were not allowed access to 

the outdoor environment. The weather station was located approximately 1,150 feet 

away from the animal housing area. Due to these discrepancies, weather data was not 

analyzed in this study.  
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